Chapter 9 Management Network Connectivity

9.2.7 Scenario 7: Provisioning the ONS 15600 Proxy Server

Note If you launch CTC against a node through a NAT (Network Address Translation) or PAT (Port Address Translation) router and that node does not have proxy enabled, your CTC session starts and initially appears to be fine. However CTC never receives alarm updates and disconnects and reconnects every two minutes. If the proxy is accidentally disabled, it is still possible to enable the proxy during a reconnect cycle and recover your ability to manage the node, even through a NAT/PAT firewall.

Figure 9-9 Proxy Server Gateway Settings

9.2.7.1 Firewall Not Enabled

Figure 9-10shows an ONS 15600 proxy server implementation. A ONS 15600 GNE is connected to a central office LAN and to ONS 15600 ENEs. The central office LAN is connected to a NOC LAN, which has CTC computers. The NOC CTC computer and craft technicians must both be able to access the ONS 15600 ENEs. However, the craft technicians must be prevented from accessing or seeing the NOC or central office LANs.

In the example, the ONS 15600 GNE is assigned an IP address within the central office LAN and is physically connected to the LAN through its LAN port. ONS 15600 ENEs are assigned IP addresses that are outside the central office LAN and given private network IP addresses. If the ONS 15600 ENEs are collocated, the craft LAN ports could be connected to a hub. However, the hub should have no other network connections.

Cisco ONS 15600 Reference Manual, R7.2

9-12

Page 172
Image 172
Cisco Systems ONS 15600 manual Firewall Not Enabled, Proxy Server Gateway Settings

ONS 15600 specifications

Cisco Systems ONS 15600 is a highly versatile optical networking platform designed to meet the demands of modern telecommunications and data services. This multiservice edge platform supports various transmission mediums and offers a wide array of features that enable efficient data transport. Ideal for service providers and large enterprises, the ONS 15600 is engineered to provide scalable and reliable optical transport solutions.

One of the notable features of the ONS 15600 is its capability to support multiple protocols, including SONET/SDH, Ethernet, OTN, and legacy TDM services. This flexibility allows users to tailor their networks according to specific service requirements while ensuring interoperability with existing infrastructure. The platform is designed to facilitate seamless service migration, accommodating both legacy and next-generation services.

The modular architecture of the ONS 15600 enhances its scalability. It allows for easy expansion by incorporating additional line cards or interface modules without requiring significant downtime. This modularity ensures that service providers can evolve their networks over time, responding to increasing bandwidth demands and new service offerings with ease.

Incorporating advanced technologies, the ONS 15600 employs Dense Wavelength Division Multiplexing (DWDM), significantly increasing the capacity of fiber networks by allowing multiple signals to be transmitted simultaneously over a single optical fiber. This capability helps to optimize fiber utilization and reduce operational costs. In addition, the platform supports Optical Transport Network (OTN) for improved error detection and correction, contributing to higher reliability and performance.

Another key characteristic of the ONS 15600 is its robust management capabilities. The platform can be managed through Cisco's Optical Networking Manager (ONM), providing a centralized interface for network configuration, monitoring, and troubleshooting. This enhances operational efficiency and minimizes downtime, allowing service providers to focus on delivering quality services to their customers.

The ONS 15600 also prioritizes security, offering various features like encryption and access control to safeguard sensitive data during transmission. With its combination of scalability, flexibility, and security, the Cisco ONS 15600 stands out as a reliable choice for organizations looking to enhance their optical networking capabilities while meeting the evolving demands of the digital landscape. Its commitment to quality and performance makes it a cornerstone of modern optical networks.