Chapter 11 Alarm Monitoring and Management

11.5.1 Alarms Suppressed for Maintenance

11.5.1 Alarms Suppressed for Maintenance

When you place a port in OOS,MT administrative state, this raises the alarm suppressed for maintenance (AS-MT) alarm in the Conditions and History windows1 and causes subsequently raised alarms for that port to be suppressed.

While the facility is in the OOS,MT state, any alarms or conditions that are raised and suppressed on it (for example, a transmit failure [TRMT] alarm) are reported in the Conditions window and show their normal severity in the Sev column. The suppressed alarms are not shown in the Alarms and History windows. (These windows only show AS-MT). When you place the port back into IS,AINS administrative state, the AS-MT alarm is resolved in all three windows. Suppressed alarms remain raised in the Conditions window until they are cleared.

11.5.2 Alarms Suppressed by User Command

In the Provisioning > Alarm Profiles > Alarm Behavior tabs, the ONS 15600 has an alarm suppression option that clears raised alarm messages for the node, chassis, one or more slots (cards), or one or more ports. Using this option raises the alarms suppressed by user command, or AS-CMD alarm. The AS-CMD alarm, like the AS-MT alarm, appears in the Conditions, and History1 windows. Suppressed conditions (including alarms) appear only in the Conditions window--showing their normal severity in the Sev column. When the Suppress Alarms check box is unchecked, the AS-CMD alarm is cleared from all three windows.

A suppression command applied at a higher level does not supersede a command applied at a lower level. For example, applying a node-level alarm suppression command makes all raised alarms for the node appear to be cleared, but it does not cancel out card-level or port-level suppression. Each of these conditions can exist independently and must be cleared independently.

Caution Use alarm suppression with caution. If multiple CTC or TL1 sessions are open, suppressing the alarms in one session suppresses the alarms in all other open sessions.

Note When an entity is put in the OOS,MT administrative state, the ONS 15600 suppresses all standing alarms on that entity. All alarms and events appear on the Conditions tab. You can change this behavior for the LPBKFACILITY and LPBKTERMINAL alarms. To display these alarms on the Alarms tab, set the NODE.general.ReportLoopbackConditionsOnPortsInOOS-MT to TRUE on the NE Defaults tab.

11.6 External Alarms and Controls

External alarm inputs are used for external sensors such as open doors and flood sensors, temperature sensors, and other environmental conditions. External control outputs allow you to drive external visual or audible devices such as bells and lights. They can control other devices such as generators, heaters, and fans.

You provision external alarms and controls in the node view Maintenance > Alarm Extenders window. Up to 16 external alarm inputs and 16 external controls are available. The external input/output contacts are located on the CAP attached to the ONS 15600 backplane.

1.AS-MT can be seen in the Alarms window as well if you have set the Filter dialog box to show NA severity events.

Cisco ONS 15600 Reference Manual, R7.2

11-13

Page 237
Image 237
Cisco Systems ONS 15600 External Alarms and Controls, Alarms Suppressed for Maintenance, Alarms Suppressed by User Command

ONS 15600 specifications

Cisco Systems ONS 15600 is a highly versatile optical networking platform designed to meet the demands of modern telecommunications and data services. This multiservice edge platform supports various transmission mediums and offers a wide array of features that enable efficient data transport. Ideal for service providers and large enterprises, the ONS 15600 is engineered to provide scalable and reliable optical transport solutions.

One of the notable features of the ONS 15600 is its capability to support multiple protocols, including SONET/SDH, Ethernet, OTN, and legacy TDM services. This flexibility allows users to tailor their networks according to specific service requirements while ensuring interoperability with existing infrastructure. The platform is designed to facilitate seamless service migration, accommodating both legacy and next-generation services.

The modular architecture of the ONS 15600 enhances its scalability. It allows for easy expansion by incorporating additional line cards or interface modules without requiring significant downtime. This modularity ensures that service providers can evolve their networks over time, responding to increasing bandwidth demands and new service offerings with ease.

Incorporating advanced technologies, the ONS 15600 employs Dense Wavelength Division Multiplexing (DWDM), significantly increasing the capacity of fiber networks by allowing multiple signals to be transmitted simultaneously over a single optical fiber. This capability helps to optimize fiber utilization and reduce operational costs. In addition, the platform supports Optical Transport Network (OTN) for improved error detection and correction, contributing to higher reliability and performance.

Another key characteristic of the ONS 15600 is its robust management capabilities. The platform can be managed through Cisco's Optical Networking Manager (ONM), providing a centralized interface for network configuration, monitoring, and troubleshooting. This enhances operational efficiency and minimizes downtime, allowing service providers to focus on delivering quality services to their customers.

The ONS 15600 also prioritizes security, offering various features like encryption and access control to safeguard sensitive data during transmission. With its combination of scalability, flexibility, and security, the Cisco ONS 15600 stands out as a reliable choice for organizations looking to enhance their optical networking capabilities while meeting the evolving demands of the digital landscape. Its commitment to quality and performance makes it a cornerstone of modern optical networks.