Chapter 9 Management Network Connectivity

9.7.6 TCP/IP and OSI Mediation

9.7.5.3 Manual TARP Adjacencies

TARP adjacencies can be manually provisioned in networks where ONS 15600s must communicate across routers or non-SONET NEs that lack TARP capability. In CTC, manual TARP adjacencies are provisioned on the node view Provisioning > OSI > TARP > MAT (Manual Area Table) subtab. The manual adjacency causes a TARP request to hop through the general router or non-SONET NE, as shown in Figure 9-22.

Figure 9-22 Manual TARP Adjacencies

DCN

Generic

router

Manual

adjacency

DCN

131957

9.7.5.4 Manual TID to NSAP Provisioning

TIDs can be manually linked to NSAPs and added to the TDC. Static TDC entries are similar to static routes. For a specific TID, you force a specific NSAP. Resolution requests for that TID always return that NSAP. No TARP network propagation or instantaneous replies are involved. Static entries allow you to forward TL1 commands to NEs that do not support TARP. However, static TDC entries are not dynamically updated, so outdated entries are not removed after the TID or the NSAP changes on the target node.

9.7.6 TCP/IP and OSI Mediation

Two mediation processes facilitate TL1 networking and file transfers between NEs and ONS client computers running TCP/IP and OSI protocol suites:

T–TD—Performs a TL1-over-IP to TL1-over-OSI gateway mediation to enable an IP-based OSS to manage OSI-only NEs subtended from a GNE. Figure 9-23shows the T–TD protocol flow.

Cisco ONS 15600 Reference Manual, R7.2

9-36

Page 196
Image 196
Cisco Systems ONS 15600 manual 6 TCP/IP and OSI Mediation, Manual Tarp Adjacencies, Manual TID to Nsap Provisioning

ONS 15600 specifications

Cisco Systems ONS 15600 is a highly versatile optical networking platform designed to meet the demands of modern telecommunications and data services. This multiservice edge platform supports various transmission mediums and offers a wide array of features that enable efficient data transport. Ideal for service providers and large enterprises, the ONS 15600 is engineered to provide scalable and reliable optical transport solutions.

One of the notable features of the ONS 15600 is its capability to support multiple protocols, including SONET/SDH, Ethernet, OTN, and legacy TDM services. This flexibility allows users to tailor their networks according to specific service requirements while ensuring interoperability with existing infrastructure. The platform is designed to facilitate seamless service migration, accommodating both legacy and next-generation services.

The modular architecture of the ONS 15600 enhances its scalability. It allows for easy expansion by incorporating additional line cards or interface modules without requiring significant downtime. This modularity ensures that service providers can evolve their networks over time, responding to increasing bandwidth demands and new service offerings with ease.

Incorporating advanced technologies, the ONS 15600 employs Dense Wavelength Division Multiplexing (DWDM), significantly increasing the capacity of fiber networks by allowing multiple signals to be transmitted simultaneously over a single optical fiber. This capability helps to optimize fiber utilization and reduce operational costs. In addition, the platform supports Optical Transport Network (OTN) for improved error detection and correction, contributing to higher reliability and performance.

Another key characteristic of the ONS 15600 is its robust management capabilities. The platform can be managed through Cisco's Optical Networking Manager (ONM), providing a centralized interface for network configuration, monitoring, and troubleshooting. This enhances operational efficiency and minimizes downtime, allowing service providers to focus on delivering quality services to their customers.

The ONS 15600 also prioritizes security, offering various features like encryption and access control to safeguard sensitive data during transmission. With its combination of scalability, flexibility, and security, the Cisco ONS 15600 stands out as a reliable choice for organizations looking to enhance their optical networking capabilities while meeting the evolving demands of the digital landscape. Its commitment to quality and performance makes it a cornerstone of modern optical networks.