Chapter 7 Circuits and Tunnels

7.13.3 Single and Dual Rolls

Figure 7-11

S

Single Roll from One Circuit to Another Circuit (Source Changes)

Node 1

 

Node 2

 

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S2

Node 3

Node 4

Original leg

New leg

134274

Note Create a Roll To Circuit before rolling a circuit with the source on Node 3 and the destination on Node 4.

A dual roll involves two cross-connects. It allows you to reroute intermediate segments of a circuit, but keep the original source and destination. If the new segments require new cross-connects, use the Bridge and Roll wizard or create a new circuit and then perform a roll.

Caution If you are using TL1 to perform rolls, this interface can only be used for single rolls. Dual rolls require the network-level view that only CTC or CTM provide.

Dual rolls have several constraints:

You must complete or cancel both cross-connects rolled in a dual roll. You cannot complete one roll and cancel the other roll.

When a Roll To circuit is involved in the dual roll, the first roll must roll onto the source of the Roll To circuit and the second roll must roll onto the destination of the Roll To circuit.

Figure 7-12illustrates a dual roll on the same circuit.

Figure 7-12 Dual Roll to Reroute a Link

S

Node 1

Node 2

D

Original leg New leg

83268

Figure 7-13illustrates a dual roll involving two circuits.

Cisco ONS 15600 Reference Manual, R7.2

7-25

Page 143
Image 143
Cisco Systems ONS 15600 manual 12illustrates a dual roll on the same circuit

ONS 15600 specifications

Cisco Systems ONS 15600 is a highly versatile optical networking platform designed to meet the demands of modern telecommunications and data services. This multiservice edge platform supports various transmission mediums and offers a wide array of features that enable efficient data transport. Ideal for service providers and large enterprises, the ONS 15600 is engineered to provide scalable and reliable optical transport solutions.

One of the notable features of the ONS 15600 is its capability to support multiple protocols, including SONET/SDH, Ethernet, OTN, and legacy TDM services. This flexibility allows users to tailor their networks according to specific service requirements while ensuring interoperability with existing infrastructure. The platform is designed to facilitate seamless service migration, accommodating both legacy and next-generation services.

The modular architecture of the ONS 15600 enhances its scalability. It allows for easy expansion by incorporating additional line cards or interface modules without requiring significant downtime. This modularity ensures that service providers can evolve their networks over time, responding to increasing bandwidth demands and new service offerings with ease.

Incorporating advanced technologies, the ONS 15600 employs Dense Wavelength Division Multiplexing (DWDM), significantly increasing the capacity of fiber networks by allowing multiple signals to be transmitted simultaneously over a single optical fiber. This capability helps to optimize fiber utilization and reduce operational costs. In addition, the platform supports Optical Transport Network (OTN) for improved error detection and correction, contributing to higher reliability and performance.

Another key characteristic of the ONS 15600 is its robust management capabilities. The platform can be managed through Cisco's Optical Networking Manager (ONM), providing a centralized interface for network configuration, monitoring, and troubleshooting. This enhances operational efficiency and minimizes downtime, allowing service providers to focus on delivering quality services to their customers.

The ONS 15600 also prioritizes security, offering various features like encryption and access control to safeguard sensitive data during transmission. With its combination of scalability, flexibility, and security, the Cisco ONS 15600 stands out as a reliable choice for organizations looking to enhance their optical networking capabilities while meeting the evolving demands of the digital landscape. Its commitment to quality and performance makes it a cornerstone of modern optical networks.