Using the Modbus RTU Protocol9300 Series User’s Guide

Measurement

Label

Source ION Module

Modbus Module and Input Number

Modbus Register

 

 

 

 

 

Max kVAR Th Dmd

kVAR td mx

Maximum

Modbus Slave #3 – Source Input #5

40067-40068

 

 

 

 

 

Max kVA Th Dmd

kVA td mx

Maximum

Modbus Slave #3 – Source Input #6

40069-40070

 

 

 

 

 

Max Avg L-N Voltage

Vln avg mx

Maximum

Modbus Slave #3 – Source Input #7

40071-40072

 

 

 

 

 

Max Average Current

I avg mx

Maximum

Modbus Slave #3 – Source Input #8

40073-40074

 

 

 

 

 

Maximum Total kW

kW tot mx

Maximum

Modbus Slave #3 – Source Input #9

40075-40076

 

 

 

 

 

Maximum Total kVAR

kVAR tot mx

Maximum

Modbus Slave #3 – Source Input #10

40077-40078

 

 

 

 

 

Maximum Total kVA

kVA tot mx

Maximum

Modbus Slave #3 – Source Input #11

40079-40080

 

 

 

 

 

Maximum Frequency

Freq mx

Maximum

Modbus Slave #3 – Source Input #12

40081-40082

 

 

 

 

 

Min Avg L-N Voltage

Vln avg mn

Minimum

Modbus Slave #3 – Source Input #13

40083-40084

 

 

 

 

 

Min Average Current

I avg mn

Minimum

Modbus Slave #3 – Source Input #14

40085-40086

 

 

 

 

 

Minimum Frequency

Freq mn

Minimum

Modbus Slave #3 – Source Input #15

40087-40088

 

 

 

 

 

Modbus Slave Module #4 Links

Measurement

Label

Source ION Module

Modbus Module and Input Number

Modbus Register

 

 

 

 

 

Imported kWh

kWh imp

Integrator

Modbus Slave #4 – Source Input #1

40089-40090

 

 

 

 

 

Exported kWh

kWh exp

Integrator

Modbus Slave #4 – Source Input #2

40091-40092

 

 

 

 

 

Total kWh

kWh tot

Integrator

Modbus Slave #4 – Source Input #3

40093-40094

 

 

 

 

 

Net kWh

kWh net

Integrator

Modbus Slave #4 – Source Input #4

40095-40096

 

 

 

 

 

Imported kVARh

kVARh imp

Integrator

Modbus Slave #4 – Source Input #5

40097-40098

 

 

 

 

 

Exported kVARh

kVARh exp

Integrator

Modbus Slave #4 – Source Input #6

40099-40100

 

 

 

 

 

Total kVARh

kVARh tot

Integrator

Modbus Slave #4 – Source Input #7

40101-40102

 

 

 

 

 

Net kVARh

kVARh net

Integrator

Modbus Slave #4 – Source Input #8

40103-40104

 

 

 

 

 

Total kVAh

kVAh

Integrator

Modbus Slave #4 – Source Input #9

40105-40106

 

 

 

 

 

Max Phase A Voltage THD

V1 THD max

Maximum

Modbus Slave #4 – Source Input #10

40107-40108

 

 

 

 

 

Max Phase B Voltage THD

V2 THD max

Maximum

Modbus Slave #4 – Source Input #11

40109-40110

 

 

 

 

 

Max Phase C Voltage THD

V3 THD max

Maximum

Modbus Slave #4 – Source Input #12

40111-40112

 

 

 

 

 

Max Phase A Current THD

I1 THD max

Maximum

Modbus Slave #4 – Source Input #13

40113-40114

 

 

 

 

 

Max Phase B Current THD

I2 THD max

Maximum

Modbus Slave #4 – Source Input #14

40115-40116

 

 

 

 

 

Max Phase C Current THD

I3 THD max

Maximum

Modbus Slave #4 – Source Input #15

40117-40118

 

 

 

 

 

Importing Data using Modbus RTU

It is possible to bring data into the 9300 Series meter using Modbus. Various ION registers can be written by Modbus Master devices by correlating the Modbus register number with the address of the ION register you want to write. When a Modbus register is written with a value, the corresponding ION register will be written, provided the Modbus RTU protocol is active on the communications channel that connects the Modbus Master to the 9300 Series meter.

Page 58

Chapter 3 - Default Meter Functionality

Page 58
Image 58
Siemens 9300, 9350, 9330 manual Modbus Slave Module #4 Links, Importing Data using Modbus RTU

9300, 9350, 9330 specifications

Siemens has made significant advancements in the field of manufacturing and industrial automation with its range of products, particularly focusing on the Siemens 9330, 9350, and 9300 series. These models are designed to optimize performance, increase efficiency, and ensure reliability in various industrial applications.

The Siemens 9330 model is known for its robust construction and versatility. It supports a variety of communication protocols, making integration into existing systems easy. One of the key features of the 9330 is its high processing speed. This enables it to handle complex operations in real time, ensuring minimal downtime. Additionally, its modular design allows for easy expansion, catering to the specific needs of different industries.

The Siemens 9350 takes automation to the next level with advanced functionalities. It incorporates cutting-edge technologies such as AI-driven diagnostics and predictive maintenance features. These technologies gather data from various sensors, providing operators with valuable insights into machine performance. The 9350 also features enhanced security measures, ensuring data protection and minimizing risks associated with cyber threats. The blend of flexibility and reliability makes it suitable for critical applications across sectors like manufacturing and energy.

The Siemens 9300 series is designed for high-precision tasks, primarily focusing on automation in manufacturing environments. This series is equipped with sophisticated motion control capabilities, allowing for precise positioning and motion synchronization. Users benefit from its user-friendly interfaces and simplified programming, which streamline the setup process and reduce operational complexities. The energy-efficient design of the 9300 series contributes to reduced operational costs, aligning with modern sustainability goals.

In summary, the Siemens 9330, 9350, and 9300 series represent the pinnacle of industrial automation technology. Each model comes with unique features and capabilities tailored to specific requirements in the manufacturing landscape. The advancements in AI, energy efficiency, security, and modular design reflect Siemens' commitment to providing high-quality solutions that enhance productivity and reduce operational risks. Whether an enterprise is looking to upgrade existing systems or implement new technologies, these models from Siemens offer the potential for significant improvement in operational efficiency.