Cypress CY7C1319CV18 manual Features, Functional Description, Configurations, Selection Guide

Page 1

CY7C1317CV18, CY7C1917CV18 CY7C1319CV18, CY7C1321CV18

18-Mbit DDR-II SRAM 4-Word Burst Architecture

Features

18-Mbit density (2M x 8, 2M x 9, 1M x 18, 512K x 36)

300 MHz clock for high bandwidth

4-word burst for reducing address bus frequency

Double Data Rate (DDR) interfaces

(data transferred at 600 MHz) at 300 MHz

Two input clocks (K and K) for precise DDR timing SRAM uses rising edges only

Two input clocks for output data (C and C) to minimize clock skew and flight time mismatches

Echo clocks (CQ and CQ) simplify data capture in high-speed systems

Synchronous internally self-timed writes

DDR-II operates with 1.5 cycle read latency when the DLL is enabled

Operates similar to a DDR-I device with 1 cycle read latency in DLL off mode

1.8V core power supply with HSTL inputs and outputs

Variable drive HSTL output buffers

Expanded HSTL output voltage (1.4V–VDD)

Available in 165-Ball FBGA package (13 x 15 x 1.4 mm)

Offered in both Pb-free and non Pb-free packages

JTAG 1149.1 compatible test access port

Delay Lock Loop (DLL) for accurate data placement

Functional Description

The CY7C1317CV18, CY7C1917CV18, CY7C1319CV18, and CY7C1321CV18 are 1.8V Synchronous Pipelined SRAMs equipped with DDR-II architecture. The DDR-II consists of an SRAM core with advanced synchronous peripheral circuitry and a two-bit burst counter. Addresses for read and write are latched on alternate rising edges of the input (K) clock. Write data is registered on the rising edges of both K and K. Read data is driven on the rising edges of C and C if provided, or on the rising edge of K and K if C/C are not provided. Each address location is associated with four 8-bit words in the case of CY7C1317CV18 and four 9-bit words in the case of CY7C1917CV18 that burst sequentially into or out of the device. The burst counter always starts with a ‘00’ internally in the case of CY7C1317CV18 and CY7C1917CV18. For CY7C1319CV18 and CY7C1321CV18, the burst counter takes in the least two significant bits of the external address and bursts four 18-bit words in the case of CY7C1319CV18, and four 36-bit words in the case of CY7C1321CV18, sequentially into or out of the device.

Asynchronous inputs include an output impedance matching input (ZQ). Synchronous data outputs (Q, sharing the same physical pins as the data inputs, D) are tightly matched to the two output echo clocks CQ/CQ, eliminating the need to capture data separately from each individual DDR SRAM in the system design. Output data clocks (C/C) enable maximum system clocking and data synchronization flexibility.

All synchronous inputs pass through input registers controlled by the K or K input clocks. All data outputs pass through output registers controlled by the C or C (or K or K in a single clock domain) input clocks. Writes are conducted with on-chip synchronous self-timed write circuitry.

Configurations

CY7C1317CV18 – 2M x 8

CY7C1917CV18 – 2M x 9

CY7C1319CV18 – 1M x 18

CY7C1321CV18 – 512K x 36

Selection Guide

Description

 

300 MHz

278 MHz

250 MHz

200 MHz

167 MHz

Unit

Maximum Operating Frequency

 

300

278

250

200

167

MHz

 

 

 

 

 

 

 

 

Maximum Operating Current

x8

770

720

670

580

515

mA

 

 

 

 

 

 

 

 

 

x9

770

720

670

580

515

 

 

 

 

 

 

 

 

 

 

x18

810

760

700

600

540

 

 

 

 

 

 

 

 

 

 

x36

890

830

765

655

600

 

 

 

 

 

 

 

 

 

Cypress Semiconductor Corporation • 198 Champion Court

San Jose, CA 95134-1709

408-943-2600

Document Number: 001-07161 Rev. *D

 

 

Revised June 18, 2008

[+] Feedback

Image 1
Contents Configurations FeaturesFunctional Description Selection GuideLogic Block Diagram CY7C1917CV18 Logic Block Diagram CY7C1317CV18Doff CLKLogic Block Diagram CY7C1321CV18 Logic Block Diagram CY7C1319CV18BWS Ball Fbga 13 x 15 x 1.4 mm Pinout Pin ConfigurationCY7C1317CV18 2M x CY7C1917CV18 2M xCY7C1321CV18 512K x CY7C1319CV18 1M xPin Name Pin Description Pin DefinitionsSynchronous Read/Write Input. When Power Supply Inputs for the Outputs of the Device Power Supply Inputs to the Core of the DeviceReferenced with Respect to TDO for JtagFunctional Overview Programmable Impedance Depth ExpansionEcho Clocks SRAM#1 ZQ Application ExampleSRAM#2 OperationComments Write Cycle DescriptionsDevice Write cycle description table for CY7C1321CV18 followsInto the device. D359 remains unaltered Device. D80 and D3518 remains unalteredIeee 1149.1 Serial Boundary Scan Jtag Idcode State diagram for the TAP controller follows TAP Controller State DiagramTAP Electrical Characteristics TAP Controller Block DiagramTAP Timing and Test Conditions TAP AC Switching CharacteristicsScan Register Sizes Identification Register DefinitionsInstruction Codes Register Name Bit SizeBit # Bump ID Boundary Scan OrderPower Up Sequence Power Up Sequence in DDR-II SramDLL Constraints DC Electrical Characteristics Electrical CharacteristicsMaximum Ratings Input High Voltage Vref + AC Electrical CharacteristicsInput LOW Voltage Vref Document Number 001-07161 Rev. *D Thermal Resistance CapacitanceParameter Description Test Conditions Max Unit Parameter Description Test Conditions Fbga UnitParameter Min Max DLL Timing Parameter Min Max Output TimesDON’T Care Undefined Switching WaveformsOrdering Information 250 167 Ball Fbga 13 x 15 x 1.4 mm Package DiagramWorldwide Sales and Design Support Products PSoC Solutions Sales, Solutions, and Legal Information

CY7C1321CV18, CY7C1917CV18, CY7C1319CV18, CY7C1317CV18 specifications

Cypress Semiconductor Corporation, a leading provider of advanced embedded memory solutions, offers a series of high-performance SRAM (Static Random Access Memory) devices ideal for a variety of applications. Among these devices are the CY7C1317CV18, CY7C1319CV18, CY7C1917CV18, and CY7C1321CV18. These components are designed to meet the growing demands for non-volatile memory in consumer electronics, automotive systems, telecommunications, and industrial applications.

The CY7C1317CV18 and CY7C1319CV18 are both 256K-bit static RAMs with distinct features. The CY7C1317CV18 offers a dual-port architecture, enabling concurrent access from multiple sources, which substantially enhances performance in data-intensive applications. On the other hand, the CY7C1319CV18 is designed for single-port access, making it ideal for simpler applications that do not require simultaneous data reads and writes.

Further extending Cypress's SRAM portfolio, the CY7C1917CV18 provides a 2M-bit memory configuration with fast access times, high-density storage, and low power consumption. It is particularly well-suited for applications needing quick data retrieval while maintaining efficiency. The architecture of the CY7C1917CV18 allows it to be integrated seamlessly into systems requiring reliable and robust data storage.

Completing the lineup is the CY7C1321CV18, which features an innovative 1M-bit SRAM design. This SRAM is known for its low latency and high speed, making it an excellent choice for high-performance computing applications. It supports a wide operating voltage range and provides a reliable solution for volatile memory needs, especially in fast caching scenarios.

These SRAM devices utilize advanced CMOS technology to achieve high speed and low power characteristics, making them competitive choices in the market. Their robust performance ensures that they satisfy the stringent requirements of various applications, including high-speed networking, graphics processing, and instrumentation.

In terms of reliability, all four devices are built to endure challenging operating conditions and provide excellent data retention. They are offered in compact packages that facilitate easy integration into PCBs, optimizing space and enhancing design flexibility. The combination of performance, low power consumption, and scalability makes Cypress's SRAM products particularly advantageous for next-generation applications across multiple industries.