Bryant R-22 service manual Aluminum Wire, Contactor, Capacitor, Electrical Shock Hazard

Page 12

ELECTRICAL

!WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Exercise extreme caution when working on any electrical components. Shut off all power to system prior to troubleshooting. Some troubleshooting techniques require power to remain on. In these instances, exercise extreme caution to avoid danger of electrical shock. ONLY TRAINED

SERVICE PERSONNEL SHOULD PERFORM ELECTRICAL TROUBLESHOOTING.

Aluminum Wire

!CAUTION

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

Aluminum wire may be used in the branch circuit (such as the circuit between the main and unit disconnect), but only copper wire may be used between the unit disconnect and the unit.

Whenever aluminum wire is used in branch circuit wiring with this unit, adhere to the following recommendations.

Connections must be made in accordance with the National Electrical Code (NEC), using connectors approved for aluminum wire. The connectors must be UL approved (marked Al/Cu with the UL symbol) for the application and wire size. The wire size selected must have a current capacity not less than that of the copper wire specified, and must not create a voltage drop between service panel and unit in excess of 2 of unit rated voltage. To prepare wire before installing connector, all aluminum wire must be “brush-scratched” and coated with a corrosion inhibitor such as Pentrox A. When it is suspected that connection will be exposed to moisture, it is very important to cover entire connection completely to prevent an electrochemical action that will cause connection to fail very quickly. Do not reduce effective size of wire, such as cutting off strands so that wire will fit a connector. Proper size connectors should be used. Check all factory and field electrical connections for tightness. This should also be done after unit has reached operating temperatures, especially if aluminum conductors are used.

Contactor

The contactor provides a means of applying power to unit using low voltage (24v) from transformer in order to power contactor coil. Depending on unit model, you may encounter single- or double-pole contactors. Exercise extreme caution when troubleshooting as 1 side of line may be electrically energized. The contactor coil is powered by 24vac. If contactor does not operate:

1.With power off, check whether contacts are free to move. Check for severe burning or arcing on contact points.

2.With power off, use ohmmeter to check for continuity of coil. Disconnect leads before checking. A low resistance reading is normal. Do not look for a specific value, as different part numbers will have different resistance values.

3.Reconnect leads and apply low-voltage power to contactor coil. This may be done by leaving high-voltage power to outdoor unit off and turning thermostat to cooling. Check voltage at coil with voltmeter. Reading should be between 20v and 30v. Contactor should pull in if voltage is correct and coil is good. If contactor does not pull in, replace contactor.

4.With high-voltage power off and contacts pulled in, check for continuity across contacts with ohmmeter. A very low or 0 resistance should be read. Higher readings could indicate burned or pitted contacts which may cause future failures.

Capacitor

!WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or equipment damage.

Capacitors can store electrical energy when power is off. Electrical shock can result if you touch the capacitor terminals and discharge the stored energy. Exercise extreme caution when working near capacitors. With power off, discharge stored energy by shorting across the capacitor terminals with a 15,000-ohm, 2-watt resistor.

NOTE: If bleed resistor is wired across start capacitor, it must be disconnected to avoid erroneous readings when ohmmeter is applied across capacitor.

!WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or equipment damage.

Always check capacitors with power off. Attempting to troubleshoot a capacitor with power on can be dangerous. Defective capacitors may explode when power is applied. Insulating fluid inside is combustible and may ignite, causing burns.

Capacitors are used as a phase-shifting device to aid in starting certain single-phase motors. Check capacitors as follows:

1.With power off, discharge capacitors as outlined above. Disconnect capacitor from circuit. Put ohmmeter on R X 10k scale. Using an analog ohmmeter, check each terminal to ground (use capacitor case). Discard any capacitor which measures 1/2 scale deflection or less. Place ohmmeter leads across capacitor and place on R X 10k scale. Meter should jump to a low resistance value and slowly climb to higher value. Failure of meter to do this indicates an open capacitor. If resistance stays at 0 or a low value, capacitor is internally shorted.

2.Capacitance testers are available which will read value of capacitor. If value is not within ±10 percent value stated on capacitor, it should be replaced. If capacitor is not open or shorted, the capacitance value is calculated by measuring voltage across capacitor and current it draws.

!WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Exercise extreme caution when taking readings while power is on.

12

Image 12
Contents Table of Contents Application GuidelineTable of Contents TWO Stage NON-COMMUNICATING TWO Stage CommunicatingAIR Conditioner and Heat Pump Model Number Nomenclature Serial Number NomenclatureSafety Considerations Installation GuidelineIntroduction Accessories Required Field-Installed Accessories for Air ConditionersRequired Field-Installed Accessories for Heat Pumps Accessory Descriptions Base / Mid-Tier / Deluxe 4-sided Baffle Assembly LOW-AMBIENT Cooling GuidelineDeluxe 3-sided Baffle Assembly and Dimensions Cabinet Assembly Long Line GuidelineBasic Cabinet Designs Access Compressor Or Other Internal Cabinet Components Legacy RNC and Legacy Line Control Box Identification Labeling Figure LabelsAluminum Wire ElectricalContactor CapacitorTime-Delay Relay Crankcase HeaterCycle Protector Pressure Switches Personal Injury HazardDefrost Thermostat Defrost Control BoardTroubleshooting HK32EA001 If outdoor unit will not run Defrost SpeedupIf defrost thermostat is stuck closed If defrost thermostat is stuck openFive-Minute Compressor Delay Quiet ShiftCooling HeatingTroubleshooting HK32EA003 Fan MotorCompressor Plug Low-Voltage TerminalsCompressor Failures Mechanical FailuresLocked Rotor Runs, Does Not PumpNoisy Compressor Split Post Grommet part number KA75UG100Single-Phase Motors Electrical FailuresUnit Personal Injury Hazard Refrigeration System RefrigerantCompressor Oil Synthetic Roof Precautionary Procedure Servicing Systems on Roofs With Synthetic MaterialsBrazing Oil ChargingService Valves and Pumpdown Pumpdown ProcedurePersonal Injury and Unit Damage Hazard Heating Piston AccuRaterr Heat Pumps Only AccuRaterr Components Used in R-22 Heat PumpsReversing Valve Reversing Valve Heating Mode, Solenoid De-EnergizedInstall Liquid-line Filter Drier Indoor AC Liquid Line Filter DrierSuction Line Filter Drier Accumulator AccumulatorInstall TXV Thermostatic Expansion Valve TXVTXV Operation Unit Operation HazardMake Piping Connections Replacing TXV on an Indoor Coil pre-2006Replacing TXV on Indoor Coil post-2006 Personal Injury and Environmental HazardRefrigeration System Repair Leak DetectionCoil Removal Fire HazardCompressor Removal and Replacement System Clean-Up After BurnoutCheck Charge EvacuationDeep Vacuum Method Troubleshooting with Superheat Basic DiagnosticsLow Superheat with Normal or Low Suction Pressure Low Superheat with High Suction PressureHigh Superheat with Normal or High Suction Pressure Hunting SuperheatPseudo Evaporator Superheat Instructions Puron System Suction Pressure Drop Example22 System Suction Pressure Drop PuronrRefrigerant Pressure Temperature Chart Psig22 Refrigerant Pressure Temperature Relationship PsigPuron Subcooling Chart Liquid Line Temperature F Liq Press Subcooling F PsigPuron Superheat Chart Superheat F Psig22 Subcooling Chart Liquid Line Temperature F PT F Subcooling F Pres Psig22 Superheat Chart TWO-STAGE Application GuidelinesModel Plug Model Plug InformationGeneral Information Low Ambient CoolingDefrost Airflow Selection for 315AAV/355AAV FurnacesLiquid-Line Solenoid Accessory Defrost HoldForced Defrost All 286A units must be charged in high stage onlyOne Minute Stage Change Time Delay on 286ANA/187ANA Models Cooling and Heating OperationUtility Interface With Evolution Control Compressor Operation on 286ANA/187ANA ModelsECM Fan Motor Troubleshooting Outdoor Fan Motor OperationTime Delays Muffler, Accumulator, Reversing Valve RVSThermistors Control BOX Troubleshooting 230V Line Power Disconnect Detection 230v Brown-Out Protection DefeatedCompressor Voltage Sensing Contactor Shorted DetectionUnloader Test Procedure Temperature ThermistorsFailed Thermistor Default Operation Thermistor Sensor ComparisonTroubleshooting Status CodesEdge Thermidistat Models T6-PRH-01 or T6-NRH-01 TWO-STAGE 286B/289B/180B/187B General Information Heating Check Chart Procedure All 286B units must be charged in high stage onlyCompressor Operation on 289B/180B Models Low Stage High Stage Low & High Model Incoming Power Troubleshooting 187B & 286B Start CircuitControl Box Contactor And CapacitorTroubleshooting HK38EA015 circuit board 286B Models Compressor Thermal Cutout 289B Compressor Thermal CutoutOutdoor Coil Thermistor OCT Attachment Status Codes Single Stage Furnace with 2-Stage Air Conditioner TWO Stage NON-COMMUNICATING 127A/226A Operating AmbientAirflow Selections ECM Furnaces Airflow Selection for FV4C Fan Coils non-communicatingSystem Function and Sequence of Operation Compressor OperationDefrost Speedup Check Charge TWO Stage Communicating 167A/266A Airflow Selections for ECM Furnaces non communicatingIndoor Thermostat Control Options Evolution Controlled Low Ambient Cooling Defrost HoldMajor Components Communication and Status Function Lights Outdoor Fan Motor OperationFor Evolution Control only, Green communications Comm Light 2230V Brown-Out Protection Defeated No 230V at Compressor Contactor Thermistor CurveOutdoor Coil Thermistor OCT Attachment 167A / 266A Troubleshooting Status CodesCare and Maintenance Final Check-Out Puronr R-410A Refrigerant Quick Reference GuideAIR Conditioner Troubleshooting Chart Heat Pump Troubleshooting Heating Cycle Heat Pump Troubleshooting Cooling Cycle Index of Tables Description Table #TWO-STAGE 286A/288A 180A/187A TWO-STAGE 286B/288B 180B/187BCatalog No. SM01---6
Related manuals
Manual 52 pages 54.32 Kb

R-22 specifications

The Bryant R-22 stands out in the landscape of residential heating and cooling systems with its combination of efficiency, durability, and modern technology. Designed primarily for homeowners seeking comfortable climate control solutions, the R-22 model delivers consistent performance throughout varying seasonal extremes.

One of the main features of the Bryant R-22 is its high energy efficiency. Rated with a SEER (Seasonal Energy Efficiency Ratio) that meets or exceeds industry standards, this air conditioning unit is designed to reduce energy consumption while providing optimal cooling. This not only helps in lowering monthly utility bills but also promotes environmentally responsible usage.

Another notable characteristic is the unit's durability. Constructed with a robust cabinet and high-quality components, the R-22 is built to withstand the rigors of daily use, with protective features that enhance its longevity. The cabinet comes with a powder-coated finish that resists corrosion and harsh weather conditions, ensuring that the unit stays functional and aesthetically pleasing for years.

The Bryant R-22 also incorporates advanced technology to improve user experience. One such innovation is the SmartSet technology, which allows homeowners to program their unit to optimize comfort levels according to their specific needs. This programmable capability enhances energy savings and ensures that the home remains at the desired temperature when residents are present.

Moreover, the unit features a Quiet Operating System that significantly reduces noise levels, making it suitable for residential areas where noise might be a concern. The design minimizes vibrations and optimizes airflow, creating a comfortable environment without disruptive sounds.

For added convenience, the Bryant R-22 is compatible with various thermostat options, including Wi-Fi-enabled models. This allows users to control their home's climate from anywhere using a smartphone app, facilitating effortless adjustments and monitoring of energy usage.

Finally, the Bryant R-22 is backed by a solid warranty, providing peace of mind for homeowners. This commitment to quality and customer satisfaction is a testament to Bryant’s dedication to producing reliable and efficient HVAC solutions. Overall, the Bryant R-22 is an exemplary choice for those looking to enhance their home comfort with the latest in HVAC technology.