Bryant R-22 Compressor Failures, Mechanical Failures, Locked Rotor, Runs, Does Not Pump

Page 19

COPELAND SCROLL COMPRESSOR

Scroll Gas Flow

Compression in the scroll is

 

created by the interaction of

 

an orbiting spiral and a

 

stationary spiral. Gas enters

 

an outer opening as one of the

 

spirals orbits.

1

 

2

3

The open passage is sealed off

As the spiral continues to orbit,

as gas is drawn into the spiral.

the gas is compressed into an

 

increasingly smaller pocket.

4

5

By the time the gas arrives at

Actually, during operation, all

the center port, discharge

six gas passages are in various

pressure has been reached.

stages of compression at all

 

times, resulting in nearly con-

 

tinuous suction and discharge.

A90198

Fig. 11 – Scroll Compressor Refrigerant Flow

The compressors used in these products are specifically designed to operate with designated refrigerant and cannot be interchanged. The compressor is an electrical (as well as mechanical) device. Exercise extreme caution when working near compressors. Power should be shut off, if possible, for most troubleshooting techniques. Refrigerants present additional safety hazards.

!CAUTION

PERSONAL INJURY HAZARD

Failure to follow this caution may result in personal injury.

Wear safety glasses, protective clothing, and gloves when handling refrigerant.

The scroll compressor pumps refrigerant through the system by the interaction of a stationary and an orbiting scroll. (See Fig. 11.) The scroll compressor has no dynamic suction or discharge valves, and it is more tolerant of stresses caused by debris, liquid slugging, and flooded starts. The compressor is equipped with an internal pressure relief port. The pressure relief port is a safety device, designed to protect against extreme high pressure. The relief port has an operating range between 550 to 625 psi differential pressure for Puronr and 350 to 450 psi differential pressure for R-22. Scrolls have a variety of shut down solutions, depending on model, to prevent backward rotation and eliminate the need for cycle protection.

Compressor Failures

Compressor failures are classified in 2 broad failure categories; mechanical and electrical. Both types are discussed below.

Mechanical Failures

A compressor is a mechanical pump driven by an electric motor contained in a welded or hermetic shell. In a mechanical failure, motor or electrical circuit appears normal, but compressor does not function normally.

!WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Do not supply power to unit with compressor terminal box cover removed.

!WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Exercise extreme caution when reading compressor currents when high-voltage power is on. Correct any of the problems described below before installing and running a replacement compressor.

Locked Rotor

In this type of failure, compressor motor and all starting components are normal. When compressor attempts to start, it draws locked rotor current and cycles off on internal protection. Locked rotor current is measured by applying a clamp-on ammeter around common (blk) lead of compressor. Current drawn when it attempts to start is then measured. Locked rotor amp (LRA) value is stamped on compressor nameplate.

If compressor draws locked rotor amps and all other external sources of problems have been eliminated, compressor must be replaced. Because compressor is a sealed unit, it is impossible to determine exact mechanical failure. However, complete system should be checked for abnormalities such as incorrect refrigerant charge, restrictions, insufficient airflow across indoor or outdoor coil, etc., which could be contributing to the failure.

Runs, Does Not Pump

In this type of failure, compressor motor runs and turns compressor, but compressor does not pump refrigerant. A clamp-on ampmeter on common leg shows a very low current draw, much lower than rated load amp (RLA) value stamped on compressor nameplate. Because no refrigerant is being pumped, there is no return gas to cool compressor motor. It eventually overheats and shuts off on its internal protection.

19

Image 19
Contents Application Guideline Table of ContentsSerial Number Nomenclature Table of Contents TWO Stage NON-COMMUNICATINGTWO Stage Communicating AIR Conditioner and Heat Pump Model Number NomenclatureInstallation Guideline Safety ConsiderationsIntroduction Required Field-Installed Accessories for Air Conditioners AccessoriesRequired Field-Installed Accessories for Heat Pumps Accessory Descriptions LOW-AMBIENT Cooling Guideline Base / Mid-Tier / Deluxe 4-sided Baffle AssemblyDeluxe 3-sided Baffle Assembly and Dimensions Long Line Guideline Cabinet AssemblyBasic Cabinet Designs Access Compressor Or Other Internal Cabinet Components Legacy RNC and Legacy Line Control Box Identification Figure Labels LabelingCapacitor Aluminum WireElectrical ContactorCrankcase Heater Time-Delay RelayCycle Protector Personal Injury Hazard Pressure SwitchesDefrost Control Board Defrost ThermostatIf defrost thermostat is stuck open Troubleshooting HK32EA001 If outdoor unit will not runDefrost Speedup If defrost thermostat is stuck closedHeating Five-Minute Compressor DelayQuiet Shift CoolingLow-Voltage Terminals Troubleshooting HK32EA003Fan Motor Compressor PlugRuns, Does Not Pump Compressor FailuresMechanical Failures Locked RotorSplit Post Grommet part number KA75UG100 Noisy CompressorElectrical Failures Single-Phase MotorsUnit Personal Injury Hazard Refrigerant Refrigeration SystemCompressor Oil Oil Charging Synthetic Roof Precautionary ProcedureServicing Systems on Roofs With Synthetic Materials BrazingPumpdown Procedure Service Valves and PumpdownPersonal Injury and Unit Damage Hazard AccuRaterr Components Used in R-22 Heat Pumps Heating Piston AccuRaterr Heat Pumps OnlyReversing Valve Heating Mode, Solenoid De-Energized Reversing ValveLiquid Line Filter Drier Install Liquid-line Filter Drier Indoor ACSuction Line Filter Drier Accumulator AccumulatorUnit Operation Hazard Install TXVThermostatic Expansion Valve TXV TXV OperationPersonal Injury and Environmental Hazard Make Piping ConnectionsReplacing TXV on an Indoor Coil pre-2006 Replacing TXV on Indoor Coil post-2006Fire Hazard Refrigeration System RepairLeak Detection Coil RemovalSystem Clean-Up After Burnout Compressor Removal and ReplacementEvacuation Check ChargeDeep Vacuum Method Low Superheat with High Suction Pressure Troubleshooting with SuperheatBasic Diagnostics Low Superheat with Normal or Low Suction PressureHunting Superheat High Superheat with Normal or High Suction PressurePseudo Evaporator Superheat Instructions Example Puron System Suction Pressure Drop22 System Suction Pressure Drop Psig PuronrRefrigerant Pressure Temperature ChartPsig 22 Refrigerant Pressure Temperature RelationshipLiquid Line Temperature F Liq Press Subcooling F Psig Puron Subcooling ChartSuperheat F Psig Puron Superheat ChartLiquid Line Temperature F PT F Subcooling F Pres Psig 22 Subcooling Chart22 Superheat Chart Model Plug Information TWO-STAGEApplication Guidelines Model PlugAirflow Selection for 315AAV/355AAV Furnaces General InformationLow Ambient Cooling DefrostAll 286A units must be charged in high stage only Liquid-Line Solenoid AccessoryDefrost Hold Forced DefrostCompressor Operation on 286ANA/187ANA Models One Minute Stage Change Time Delay on 286ANA/187ANA ModelsCooling and Heating Operation Utility Interface With Evolution ControlOutdoor Fan Motor Operation ECM Fan Motor TroubleshootingMuffler, Accumulator, Reversing Valve RVS Time DelaysThermistors Control BOX Troubleshooting Contactor Shorted Detection 230V Line Power Disconnect Detection230v Brown-Out Protection Defeated Compressor Voltage SensingThermistor Sensor Comparison Unloader Test ProcedureTemperature Thermistors Failed Thermistor Default OperationStatus Codes TroubleshootingEdge Thermidistat Models T6-PRH-01 or T6-NRH-01 TWO-STAGE 286B/289B/180B/187B General Information All 286B units must be charged in high stage only Heating Check Chart ProcedureCompressor Operation on 289B/180B Models Low Stage High Stage Low & High Model Contactor And Capacitor Incoming PowerTroubleshooting 187B & 286B Start Circuit Control BoxTroubleshooting HK38EA015 circuit board 289B Compressor Thermal Cutout 286B Models Compressor Thermal CutoutOutdoor Coil Thermistor OCT Attachment Status Codes Single Stage Furnace with 2-Stage Air Conditioner Airflow Selection for FV4C Fan Coils non-communicating TWO Stage NON-COMMUNICATING 127A/226AOperating Ambient Airflow Selections ECM FurnacesCompressor Operation System Function and Sequence of OperationDefrost Speedup Check Charge Airflow Selections for ECM Furnaces non communicating TWO Stage Communicating 167A/266AIndoor Thermostat Control Options Defrost Hold Evolution Controlled Low Ambient CoolingMajor Components Outdoor Fan Motor Operation Communication and Status Function LightsFor Evolution Control only, Green communications Comm Light 2230V Brown-Out Protection Defeated Thermistor Curve No 230V at Compressor ContactorOutdoor Coil Thermistor OCT Attachment Status Codes 167A / 266A TroubleshootingCare and Maintenance Puronr R-410A Refrigerant Quick Reference Guide Final Check-OutAIR Conditioner Troubleshooting Chart Heat Pump Troubleshooting Heating Cycle Heat Pump Troubleshooting Cooling Cycle TWO-STAGE 286B/288B 180B/187B Index of TablesDescription Table # TWO-STAGE 286A/288A 180A/187ACatalog No. SM01---6
Related manuals
Manual 52 pages 54.32 Kb

R-22 specifications

The Bryant R-22 stands out in the landscape of residential heating and cooling systems with its combination of efficiency, durability, and modern technology. Designed primarily for homeowners seeking comfortable climate control solutions, the R-22 model delivers consistent performance throughout varying seasonal extremes.

One of the main features of the Bryant R-22 is its high energy efficiency. Rated with a SEER (Seasonal Energy Efficiency Ratio) that meets or exceeds industry standards, this air conditioning unit is designed to reduce energy consumption while providing optimal cooling. This not only helps in lowering monthly utility bills but also promotes environmentally responsible usage.

Another notable characteristic is the unit's durability. Constructed with a robust cabinet and high-quality components, the R-22 is built to withstand the rigors of daily use, with protective features that enhance its longevity. The cabinet comes with a powder-coated finish that resists corrosion and harsh weather conditions, ensuring that the unit stays functional and aesthetically pleasing for years.

The Bryant R-22 also incorporates advanced technology to improve user experience. One such innovation is the SmartSet technology, which allows homeowners to program their unit to optimize comfort levels according to their specific needs. This programmable capability enhances energy savings and ensures that the home remains at the desired temperature when residents are present.

Moreover, the unit features a Quiet Operating System that significantly reduces noise levels, making it suitable for residential areas where noise might be a concern. The design minimizes vibrations and optimizes airflow, creating a comfortable environment without disruptive sounds.

For added convenience, the Bryant R-22 is compatible with various thermostat options, including Wi-Fi-enabled models. This allows users to control their home's climate from anywhere using a smartphone app, facilitating effortless adjustments and monitoring of energy usage.

Finally, the Bryant R-22 is backed by a solid warranty, providing peace of mind for homeowners. This commitment to quality and customer satisfaction is a testament to Bryant’s dedication to producing reliable and efficient HVAC solutions. Overall, the Bryant R-22 is an exemplary choice for those looking to enhance their home comfort with the latest in HVAC technology.