Foundation

G.A.

G.A.

COMPRESSOR UNIT

CENTER LINE OF

GAS COMPRESSION

SYSTEM

EL. TOP OF

GRADE

6"

# 6 @ 12"

EACH WAY TOP & BOTTOM

EXCAVATE TO FROST DEPTH AS REQ'D AND BACKFILL

WITH CLSM OR NON-FROST SUSCEPTIBLE FILL

Figure 2. Concrete Pad with Compressor Unit Dimensions - Front View

Once the site has been excavated and prepared, place four inches of sand down on the bed where the foundation will rest. The sand must be compacted before placing the forms and rebar. After the sand is compacted, use the Vilter GA drawing to construct the forms for the foundation. With forms in place, install expansion boards on the inside of the forms, for example, see Figure 3 - Interior Foundation Isolation. Next, place your rebar in the forms as per the Vilter foundation drawing. When all rebars are in place the concrete can be poured. The concrete must then be trolled level and a surface texture etched in place. Leave the concrete to cure for at least 28 days.

 

 

 

 

 

 

ISOLATION JOINT,

 

 

 

 

 

 

 

 

 

 

 

 

1" MINIMUM

COMPRESSOR UNIT

 

CHAMFER EDGE

 

 

 

THICKNESS

 

 

 

FOUNDATION

 

 

 

 

 

 

 

CONCRETE

 

SLAB IN

6”

BUILDING

14

Figure 3. Interior Foundation Isolation

 

Page 14
Image 14
Emerson VSS, VSR, VSM service manual Isolation Joint, Minimum

VSS, VSM, VSR specifications

Emerson VSM, VSR, and VSS are advanced technologies designed for process automation and control, often utilized in industrial applications. These systems are part of Emerson's broader portfolio of solutions aimed at enhancing operational efficiency, safety, and reliability.

The Emerson VSM, or Valve Signature Management, focuses on the digital management of valves within a system. One of its main features includes advanced diagnostics that monitor the health and performance of control valves. This technology allows for predictive maintenance, ensuring that valves operate at peak efficiency and reducing the risk of unexpected failures. The VSM utilizes a combination of smart sensors and actuators to gather data, enabling real-time analytics that can enhance decision-making and operational strategies.

On the other hand, VSR, or Valve Status Reporting, enhances visibility into the operational state of valves in real time. This system provides operators with critical updates and alerts related to valve conditions, significantly reducing response times to potential issues. The VSR technology integrates seamlessly with existing control systems, allowing for easier implementation and minimal disruption to ongoing operations. The reporting capabilities feature user-friendly dashboards that present complex data in a straightforward manner, empowering operators to make informed decisions quickly.

The Emerson VSS, or Valve Service Solutions, complements the VSM and VSR by focusing on the maintenance and support of valve systems. This offering includes comprehensive service packages that range from routine maintenance to advanced troubleshooting and repair. The VSS is designed to improve the lifespan of valves through proactive service, ensuring reliability and minimal downtime. Emerson’s trained technicians leverage predictive analytics derived from VSM and VSR data, allowing for timely intervention before issues escalate.

In summary, Emerson’s VSM, VSR, and VSS technologies work together to create a robust ecosystem for valve management in industrial settings. The combination of advanced diagnostics, real-time reporting, and comprehensive service solutions provides operators with a powerful toolkit aimed at optimizing performance and ensuring operational reliability. With these technologies, companies can embrace digital transformation, reduce operational risks, and improve overall process efficiency, leading to a safer and more productive environment. Each component plays a crucial role in empowering industries to meet the challenges of modern automation and maintain competitive advantages in their respective markets.