QR QR Factorization. Factorizes an m×n matrix A numerically as Q*R, where Q is an orthogonal matrix and R is an upper triangular matrix, and returns R. R is stored in var2 and Q=A*inv(R) is stored in var1.

QR(matrix A,var1,var2)

Example:

QR 1 2 returns 3 4

0.36120.94860.94860.3162

,

 

3.16224.4271

 

,

 

1 0

 

 

 

 

 

 

 

 

 

 

 

0

0.6324

 

 

 

0 1

 

SCHUR Schur Decomposition. Factorizes a square matrix into two matrices. If matrix is real, then the result is {[[orthogonal]],[[upper-quasi triangular]]}.

If matrix is complex, then the result is {[[unitary]],[[upper-triangular]]}.

SCHUR(matrix)

Example:

SCHUR 1 2 returns

3 4

0.4159

0.9093

,

0.9093

0.4159

 

5.3722

1

5.55×10170.3722

SVD Singular Value Decomposition. Factorizes an m × n matrix into two matrices and a vector:

{[[m × m square orthogonal]],[[n × n square orthogonal]], [real]}.

 

 

SVD(matrix)

 

 

 

 

 

 

 

 

 

 

 

Example:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

 

returns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SVD

3 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4045

0.9145

 

 

 

 

 

0.57600.8174

 

 

 

 

 

 

 

 

 

 

 

 

,

5.46490.3659

,

 

 

 

 

0.91450.4045

 

 

 

 

 

0.81740.5760

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

484

 

 

 

 

 

 

 

 

 

 

 

 

Matrices

 

Page 490
Image 490
HP Prime Graphing NW280AAABA manual QRmatrix A,var1,var2, SCHURmatrix, Example Schur ⎛⎜ 1 2 ⎞⎟ returns, Svd ⎝, 3722…