Series Returns the series expansion of an expression in the vicinity of a given equality variable. With the optional third and fourth arguments you can specify the order and direction of the series expansion. If no order is specified the series returned is fifth order. If no direction is specified, the series is bidirectional.

series(Expr,Equal(var=limit_point),[Orde r],[Dir(1,0,-1)])

Example:

series((x^4+x+2)/(x^2+1),x=0,5) gives 2+x-2x^2- x^3+3x^4+x^5+x^6*order_size(x)

Summation Returns the discrete sum of Expr with respect to the variable Var from Real1 to Real2. You can also use the summation template in the Template menu. With only the first two arguments, returns the discrete antiderivative of the expression with respect to the variable.

sum(Expr,Var,Real1, Real2,[Step])

Example:

sum(n^2,n,1,5) returns 55

Differential

Curl Returns the rotational curl of a vector field. Curl([A B C], [x y z]) is defined to be [dC/dy-dB/dz dA/dz-dC/dx dB/dx-dA/ dy].

curl([Expr1, Expr2, …, ExprN], [Var1, Var2, …, VarN])

Example:

curl([2*x*y,x*z,y*z],[x,y,z]) returns [z-x,0,z- 2*x]

Divergence Returns the divergence of a vector field, defined by: divergence([A,B,C],[x,y,z])=dA/dx+dB/dy+dC/dz.

divergence([Expr1, Expr2, …, ExprN], [Var1, Var2, …, VarN])

Example:

divergence([x^2+y,x+z+y,z^3+x^2],[x,y,z]) gives 2*x+3*z^2+1

Functions and commands

327

Page 333
Image 333
HP Prime Graphing NW280AAABA manual SeriesExpr,Equalvar=limitpoint,Orde r,Dir1,0,-1, SumExpr,Var,Real1, Real2,Step