Air Cooled Models

3.4.3Charging

1.Make sure unit is OFF. Open all disconnect switches and, on units supplied with circuit breakers, open all breakers. Replace all fuses for the Fan and Compressors or close breakers.

2.Remove jumper on the Fan Safety Switch and reconnect the system wire connections. Ensure that all operational components are clear of debris. Turn unit ON. (Fan operation is required.) Check the evaporator fan for proper rotation and correct if necessary.

3.Connect the refrigerant gauge charging hose to the drum of refrigerant and to the suction and discharge service valves of the compressor.

4.Calculate the amount of charge for the system. Weigh in as much of the system charge as possible. Refer to the unit, condenser and refrigerant line charge tables.

5.Set the control temperature setpoint (see operation manual) to 60°F (15°C) and set the % relative humidity setpoint higher than the conditioned room ambient to ensure that solenoid valves and hot gas bypass valves are open during the charging procedure. You may have to bypass the

LP Switch (low pressure switch) to start the compressors and stop short cycling. Reset the Head Pressure switch(es) if open.

6.Add refrigerant (R407C liquid, or R22 vapor per unit nameplate) to the suction side of the compressor until there is sufficient pressure to energize the low-pressure switch.

NOTE

When adding refrigerant to an operating system, it may be necessary to add the refrigerant through the compressor suction service valve. Because the refrigerant leaving the refrigerant cylinder must be in a liquid state, care must be exercised to avoid damage to the compressor. It is suggested that a sight glass be connected between the charging hose and the compressor suction service valve. This will permit adjustment of the cylinder hand valve so that liquid can leave the cylinder while allowing vapor to enter the compressor.

Then you may remove the manual bypass you applied earlier.

7.Charge the unit until the liquid line sight glass becomes clear. Then add one additional pound of refrigerant.

8.As head pressure builds, the condenser fan starts rotating. The fan becomes fully energized when sufficient head pressure is developed. (Fan starts to rotate at 190 psi and is full speed at 250 psi.)

Table 10 Refrigerant control settings psi (kPa)

Low Pressure

Low Pressure

High Pressure

Cut Out

Cut In

Cut Out

 

 

 

20 (137.9)

65 (448.2)

360 (2482)

 

 

 

3.5Lee-Temp/Flood Back Head Pressure Control Systems

The Lee-Temp system consists of a modulating type head pressure control valve and insulated receiver with heater pad to ensure operation at ambient temperatures as low as -30°F (-34.4°C).

3.5.1Piping

Lee-Temp systems have two factory-supplied, field-installed check valves: one on the discharge side of the scroll compressor and one on the inlet side of the receiver. Be sure to install the check valves with the refrigerant flow in the proper direction. When soldering or brazing the valves, it is very important that the internal parts be protected by wrapping the valve with a damp cloth to keep the valve tem- perature below 250°F (121°C).

22

Page 28
Image 28
Liebert 3000 Lee-Temp/Flood Back Head Pressure Control Systems, Charging, Piping, Refrigerant control settings psi kPa

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.