Split System Models

7.5.2Ducting

The total external static pressure for the inlet and outlet ducts, including grille, must not exceed 0.5 inches of H2O. Hood intake dimensions should be the same as the condensing unit duct dimen- sions.

If the condensing unit is located close to the outside of the building, rain hoods must be installed. In addition, install a triple layer bird screen over rain hood openings to eliminate the possibility of insects, birds, water, or debris entering the unit.

Use flexible ductwork or nonflammable cloth collars to attach ductwork to the unit and to control vibration transmission to the building. Attach the ductwork to the unit using the flanges provided. Locate the unit and ductwork so that the return air does not short circuit to the supply air inlet.

Avoid directing the hot exhaust air toward adjacent doors or windows.

Normal operating sound may be objectionable if the condensing unit is placed directly over quiet work areas. Ductwork that runs through a conditioned space or is exposed to areas where condensation may occur must be insulated. Whenever possible, ductwork should be suspended using flexible hang- ers. Ductwork should not be fastened directly to the building structure. In applications where the ceil- ing plenum is used as the heat rejection domain, the discharge air must be directed away from the condensing unit air inlet and a screen must be added to the end of the discharge duct to protect ser- vice personnel.

For multiple unit installations, space the units so that the hot condensing unit exhaust air is not directed toward the air inlet of an adjacent unit.

Table 31 Airflow CFM (CMH)

 

3 Ton

5 Ton

 

 

 

60 Hz

2000 (3398)

3500 (5947)

 

 

 

50 Hz

1650 (2800)

3500 (5947)

 

 

 

54

Page 60
Image 60
Liebert 3000 installation manual Ducting, Airflow CFM CMH, Ton

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.