Intel E8500 manual Thermal Metrology, Die Case Temperature Measurements

Page 19

5Thermal Metrology

The system designer must make temperature measurements to accurately determine the thermal performance of the system. Intel has established guidelines for proper techniques to measure the NB/XMB die temperatures. Section 5.1 provides guidelines on how to accurately measure the NB/XMB die temperatures. Section 5.2 contains information on running an application program that will emulate anticipated maximum thermal design power. The flowchart in Figure 5-1offers useful guidelines for thermal performance and evaluation.

5.1Die Case Temperature Measurements

To ensure functionality and reliability, the Tcase of the NB/XMB must be maintained at or between the maximum/minimum operating range of the temperature specification as noted in Table 3-1and Table 3-2. The surface temperature at the geometric center of the die corresponds to Tcase.

Measuring Tcase requires special care to ensure an accurate temperature measurement.

Temperature differences between the temperature of a surface and the surrounding local ambient air can introduce errors in the measurements. The measurement errors could be due to a poor thermal contact between the thermocouple junction and the surface of the package, heat loss by radiation and/or convection, conduction through thermocouple leads, and/or contact between the thermocouple cement and the heatsink base (if a heatsink is used). For maximize measurement accuracy, only the 0° thermocouple attach approach is recommended.

Zero Degree Angle Attach Methodology

1.Mill a 3.3 mm (0.13 in.) diameter and 1.5 mm (0.06 in.) deep hole centered on the bottom of the heatsink base.

2.Mill a 1.3 mm (0.05 in.) wide and 0.5 mm (0.02 in.) deep slot from the centered hole to one edge of the heatsink. The slot should be parallel to the heatsink fins (see Figure 5-2).

3.Attach thermal interface material (TIM) to the bottom of the heatsink base.

4.Cut out portions of the TIM to make room for the thermocouple wire and bead. The cutouts should match the slot and hole milled into the heatsink base.

5.Attach a 36 gauge or smaller calibrated K-type thermocouple bead or junction to the center of the top surface of the die using a high thermal conductivity cement. During this step, ensure no contact is present between the thermocouple cement and the heatsink base because any contact will affect the thermocouple reading. It is critical that the thermocouple bead makes contact with the die (see Figure 5-3).

6.Attach heatsink assembly to the NB/XMB and route thermocouple wires out through the milled slot.

Intel® E8500 Chipset North Bridge (NB) and eXternal Memory

19

Bridge (XMB) Thermal/Mechanical Design Guide

 

Image 19
Contents Thermal/Mechanical Design Guide Intel E8500 Chipset North Bridge NB and eXternal Memory Contents Figures Tables Revision History Design Flow IntroductionBGA Definition of TermsXMB Reference DocumentsIntroduction TNB Packaging TechnologyNB Package Dimensions Bottom View XMB Package Dimensions Top View Package Mechanical Requirements XMB Package Dimensions Bottom ViewThermal Design Power TDP Thermal SpecificationsDie Case Temperature Specifications Intel E8500 Chipset XMB Thermal Specifications Thermal Simulation Thermal Simulation Thermal Metrology Die Case Temperature MeasurementsThermal Solution Decision Flowchart Power Simulation Software Thermal Metrology Operating Environment NB Reference Thermal Solution #1Heatsink Performance Mechanical Design Envelope First NB Reference Heatsink Volumetric Envelope Board-Level Components Keepout DimensionsTNBLocation First NB Heatsink Thermal Solution AssemblyExtruded Heatsink Profiles Heatsink Retaining Fastener Reliability Guidelines Reliability GuidelinesNB Reference Thermal Solution #1 NB Reference Thermal Solution #2 NB Reference Thermal Solution #2 Second NB Reference Heatsink Volumetric Envelope Second NB Heatsink Thermal Solution AssemblySecond NB Heatsink Assembly Please refer to .6 for detail NB Reference Thermal Solution #2 XMB Reference Thermal Solution XMB Reference Heatsink Volumetric Envelope XMB Heatsink Thermal Solution AssemblyXMB Location Extruded Heatsink Profiles XMB Heatsink Extrusion Profile XMB Reference Thermal Solution Table A-1 NB Heatsink Thermal Solution #1 Thermal Solution Component SuppliersTable A-2 NB Heatsink Thermal Solution #2 Table A-3 XMB Heatsink Thermal Solution Thermal Solution Component Suppliers Table B-1. Mechanical Drawing List Mechanical DrawingsFigure B-1. NB Heatsink #1 Assembly Drawing Figure B-2. NB Heatsink #1 Drawing Figure B-3. NB Heatsink #2 Assembly Drawing Figure B-4. NB Heatsink #2 Drawing Figure B-5. XMB Heatsink Assembly Drawing Figure B-6. XMB Heatsink Drawing Intel E8500 Chipset North Bridge NB and eXternal Memory