Cypress CY7C1320CV18-167BZC, CY7C1320CV18-200BZC, 001-07160 Ieee 1149.1 Serial Boundary Scan Jtag

Page 10

CY7C1318CV18

CY7C1320CV18

IEEE 1149.1 Serial Boundary Scan (JTAG)

These SRAMs incorporate a serial boundary scan Test Access Port (TAP) in the FBGA package. This part is fully compliant with IEEE Standard #1149.1-2001. The TAP operates using JEDEC standard 1.8V I/O logic levels.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (VSS) to prevent clocking of the device. TDI and TMS are inter- nally pulled up and may be unconnected. They may alternatively be connected to VDD through a pull up resistor. TDO must be left unconnected. Upon power up, the device comes up in a reset state, which does not interfere with the operation of the device.

Test Access Port—Test Clock

The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK.

Test Mode Select (TMS)

The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. This pin may be left unconnected if the TAP is not used. The pin is pulled up inter- nally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI pin is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register, see the TAP Controller State Diagram on page 12. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) on any register.

Test Data-Out (TDO)

The TDO output pin is used to serially clock data out from the registers. The output is active, depending upon the current state of the TAP state machine (see Instruction Codes on page 15). The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register.

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This Reset does not affect the operation of the SRAM and can be performed while the SRAM is operating. At power up, the TAP is reset internally to ensure that TDO comes up in a high-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins to scan the data in and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction registers. Data is serially loaded into the TDI pin on the rising edge of TCK. Data is output on the TDO pin on the falling edge of TCK.

Instruction Register

Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO pins, as shown in TAP Controller Block Diagram on page 13. Upon power up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state, as described in the previous section.

When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between TDI and TDO pins. This enables shifting of data through the SRAM with minimal delay. The bypass register is set LOW (VSS) when the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all of the input and output pins on the SRAM. Several No Connect (NC) pins are also included in the scan register to reserve pins for higher density devices.

The boundary scan register is loaded with the contents of the RAM input and output ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO pins when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can be used to capture the contents of the input and output ring.

The Boundary Scan Order on page 16 shows the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in Identification Register Definitions on page 15.

TAP Instruction Set

Eight different instructions are possible with the three-bit instruction register. All combinations are listed in Instruction Codes on page 15. Three of these instructions are listed as RESERVED and must not be used. The other five instructions are described in detail below.

Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO pins. To execute the instruction once it is shifted in, the TAP controller must be moved into the Update-IR state.

Document Number: 001-07160 Rev. *F

Page 10 of 26

[+] Feedback

Image 10
Contents Functional Description FeaturesConfigurations Selection GuideLogic Block Diagram CY7C1318CV18 Logic Block Diagram CY7C1320CV18CY7C1318CV18 1M x Pin ConfigurationBall Fbga 13 x 15 x 1.4 mm Pinout CY7C1320CV18 512K xSynchronous Read/Write Input. When Pin DefinitionsPin Name Pin Description Referenced with Respect toTDO for Jtag Power Supply Inputs to the Core of the DevicePower Supply Inputs for the Outputs of the Device TCK Pin for JtagFunctional Overview Echo Clocks Application ExampleProgrammable Impedance SRAM#1 ZQFirst Address External Second Address Internal Write Cycle DescriptionsOperation CommentsInto the device. D359 remains unaltered Write cycle description table for CY7C1320CV18 follows.2Device Device. D80 and D3518 remains unalteredIeee 1149.1 Serial Boundary Scan Jtag Idcode TAP Controller State Diagram State diagram for the TAP controller follows.9TAP Controller Block Diagram TAP Electrical CharacteristicsTAP AC Switching Characteristics TAP Timing and Test ConditionsInstruction Codes Identification Register DefinitionsScan Register Sizes Register Name Bit SizeBoundary Scan Order Bit # Bump IDPower Up Sequence Power Up Sequence in DDR II SramDLL Constraints DC Electrical Characteristics Neutron Soft Error ImmunityElectrical Characteristics Maximum RatingsThermal Resistance AC Electrical CharacteristicsCapacitance Parameter Description Test Conditions Max UnitParameter Min Max Parameter Min Max Output Times DLL TimingSwitching Waveforms Read/Write/Deselect Sequence26, 27CY7C1320CV18-267BZXC Ordering InformationCY7C1320CV18-167BZC Document Number 001-07160 Rev. *F Package Diagram Ball Fbga 13 x 15 x 1.4 mmDocument History Sales, Solutions, and Legal Information Worldwide Sales and Design Support Products