Liebert 3000 manual Start-Up Procedure

Page 10

Introduction

1.2Start-Up Procedure

Before beginning start-up, make certain that unit was installed according to the instructions in the Installation Manual. Verify that the fan shipping bolt has been removed, the check valve has been installed (on air cooled units), and that the scroll compressor is rotating in the proper direction. All exterior panels must be in place with the front panel open.

Locate the start-up form supplied with your unit documents. Complete the form during your start-up and mail it to Liebert when start-up is completed. Contact your Liebert supplier if you have any ques- tions or problems during your unit installation, start-up, or operation.

! WARNING

Potentially lethal voltages exist within this equipment during operation. Observe all cautions and warnings on unit and in this manual. Failure to do so could result in serious injury or death. Only qualified service and maintenance personnel should work with this equipment.

1.Disconnect all power to the environmental control unit.

2.Tighten all electrical wiring connections that may have loosened during shipping (on electric panel and at all major components, such as compressor, reheats, humidifier and motor).

3.Remove all line voltage fuses except the main fan fuses at the far right of the electric panel and the Control Voltage fuses at the far left of the electric panel. For units supplied with circuit breakers, open them instead of removing fuses.

4.Turn on power and check line voltage on main unit disconnect switch. Line voltage must be within 10% of nameplate voltage.

5.Turn ON main unit disconnect switch and check secondary voltage at transformer T1. Voltage at T1 must be 24 VAC ±2.5 VAC (check at TB1-1 and TB1-8). T1 voltage must not exceed 28 VAC. Change primary tap if necessary.

6.Push ON button. Blower will start.

7.If you do not want your unit to operate at factory default settings, set temperature and humidity setpoints and sensitivity, alarms, and other control functions. Refer to 2.0 - Operation with Advanced Microprocessor Controls or 3.0 - Operation with Advanced Microprocessor with Graphics Control.

8.Stop unit by depressing ON/OFF button on the front display. Turn OFF main unit disconnect and main breaker.

9.Replace all fuses (or reset circuit breakers) that were removed in Step 3.

10.Restore power to unit; turn ON the main unit disconnect switch.

11.Push ON button - putting the unit into operation.

12.Check the current draw on all line voltage components and match with serial tag.

13.Verify that the scroll compressor is rotating in the proper direction.

! CAUTION

The scroll compressor must rotate in the proper direction. Rotation in the wrong direction will result in poor performance and compressor damage.

14.Check for unusual noises and vibration.

15.Check all refrigerant and fluid lines for leaks.

16.Test all functions of your unit for proper operation.

17.Close high voltage dead front cover and latch.

18.Close front accent panel and latch.

Return completed start-up form to:

Liebert Corporation Warranty Registration 1050 Dearborn Drive P.O. Box 29186 Columbus, OH 43229

2

Image 10
Contents Liebert Challenger Page Table of Contents Run Diagnostics Alarm Descriptions Component Operation and MaintenanceHumidifier Figures Page Glycool Chilled Glycol Cooling Systems System DescriptionsCompressorized Systems Chilled Water SystemsStart-Up Procedure Basics Advanced microprocessor control panelAdvanced microprocessor a control for Challenger Status Display Status/Alarm DataMain Menu MENU/ESC Run Hours Log Setpoints/SetupDefault setpoints and ranges Analog SensorsSetup System Setup OperationSelect Options Show DIP SwitchesCalibrate Sensors Default Time Setup AlarmsAlarm default time delays Alarm Delay secondsStandard Custom Alarm Messages Humidity HUM Control MethodSet Status Display Analog SetupCalibrate Actuator Test Outputs Run DiagnosticsShow Inputs Test Control BoardControl Circuit Board Change PasswordsDate and Time LCD Display ContrastControl Outputs DIP SwitchesNon-Volatile Memory Control output LEDsOperation with Advanced Microprocessor with Graphics Control Advanced microprocessor with graphics control menu View/Set Alarms See 3.7.7 Set Status DisplaySetup Alarms Setup Water Detect Floor Plan Setup Custom AlarmsView Water Detect Floor Plan for Optional LTM1000/LT750 Operating Status System SetupCold Start Delay View/Set Control SetpointsIR Flush Overfill infrared humidifiers only Auto Restart DelayDefault Settings and Ranges Chilled Water/Hot Water/Econ-O-Coil FlushCalibrate Valve Actuator Select Control Algorithm Chilled Water and SCR Reheats onlyRun Diagnostics Select Humidity Sensing ModeShow Inputs Plot Graphs Setting optionsModify Plot Scales Analog/Digital Inputs View Run Hours LogView Total Run Hours View 24 Hour Run Time HistoryLCD Contrast Nonvolatile Memory Response to Control Types Proportional Control Temperature ControlCooling/Heating Required, in Percent % PID Control Chilled Water or SCR Reheats onlyChilled Water Cooling Glycool CoolingDual Cooling Source Cooling/dehumidification load status responseHot Water Reheat Humidity ControlHeating Operation Electric Reheat SCR Electric Reheat Requires Special Control SoftwareHumidification Operation System Activation Control TypesProportional Control Time between peaks x 5% Connecting the Analog Sensors Load Control FeaturesAdditional Features Short Cycle ControlWater Detection Display Installation-LT750 DIP Switch SettingsFault LT750 Environmental UnitPhysical Connections SetupCalibration Communications Liebert Monitoring Devices and SoftwareStandard Alarms Change FilterCompressor Overload Custom AlarmsHigh Temperature High Head PressureLoss of Power High Temperature and Low Temperature SimultaneouslyHumidifier Problem Infrared Humidifiers Low TemperatureOptional/Custom Alarms System Testing Water Detection Sensor FirestatSmoke Detector Liebert unit Recommended Liquitect location Floor drainRemote Shutdown Zone leak detection kit installation scenariosFilters Distance From UnitBelt Blower PackageFan Impellers and Bearings Air DistributionDischarge Pressure Refrigeration SystemSuction Pressure SuperheatThermostatic Expansion Valve Operation AdjustmentHot Gas Bypass Valve Operation Outdoor fan/condenser configuration Air Cooled CondenserRegulating Valve Water/Glycol Cooled Condensers Coaxial CondenserValve spring guide Glycol Solution Maintenance Adjusting Collar NutCompressor Functional Check Compressor ReplacementMechanical Failure Compressor Replacement Procedure Electrical FailureInfrared Humidifier Cleaning the PanHumidifier Removing the PanAutoflush Controls Autoflush Infrared Humidifier Cleaning SystemAutoflush Operation Steam Generating HumidifierOperation ControlsPart Capacity Number Voltage Lbs/hr kg/hr Replacing the CanisterHumidifier canister part numbers 200-460Circuit Board Adjustments Drain Tempering FeatureChilled water troubleshooting Blower troubleshootingSymptom Possible Cause Check or Remedy Compressor and refrigeration system troubleshooting Compressor and refrigeration system troubleshooting Infrared humidifier troubleshooting Dehumidification troubleshootingGlycol pump troubleshooting See 6.4.8 Compressor Functional Check and TableSteam generating humidifier troubleshooting Reheat troubleshooting Compressor Filters Steam Generating HumidifierBlower Section Air Cooled Condenser if applicableGlycol Pump FiltersWater/Glycol Condenser if applicable Electrical PanelSemiannual Maintenance Inspection Checklist Page Ti n Ne tIti That
Related manuals
Manual 76 pages 48.63 Kb Manual 59 pages 52.87 Kb

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.