Liebert 3000 manual Operation with Advanced Microprocessor with Graphics Control

Page 23

Operation with Advanced Microprocessor with Graphics Control

3.0OPERATION WITH ADVANCED MICROPROCESSOR WITH GRAPHICS CONTROL

The advanced microprocessor with graphics (G) control for your Liebert Challenger 3000 unit features an easy to use, menu driven LCD Graphics Display. The menus, control features, and circuit board details are described in this section. For more details on the control refer to 4.0 - System Perfor- mance with Advanced Microprocessor Controls; for details on the alarms refer to 5.0 - Alarm Descriptions.

3.1Basics

Control keys include ON/OFF, Menu/ESCape, ENTER, Increase (UP) arrow, and Decrease (DOWN) arrow. Refer to Figure 3. These keys are used to move through the menus as prompted on the LCD display (refer to Figure 4).

To turn the unit ON, press the ON/OFF key after power is applied. To turn the unit OFF, press the ON/OFF key before power is disconnected.

Active alarms are indicated on the LCD screen by a ringing bell. Alarms are also annunciated by an audible beeper. To silence an alarm, press the ENTER key as prompted on the display. The unit stores the 60 most recent alarms for review.

Setpoints, DIP switch settings, and other selections were made on your unit before testing at the fac- tory and are kept in nonvolatile memory. Setpoints were chosen based on typical operating experi- ence. Other selections were made based on options included with your unit. Make adjustments to the factory default selections ONLY if they do not meet your specifications. When entering setpoints, time delays, etc., the allowable ranges are displayed and may require a password, if enabled.

Figure 3 Advanced microprocessor with graphics (G) control panel

15

Image 23
Contents Liebert Challenger Page Table of Contents Run Diagnostics Component Operation and Maintenance Alarm DescriptionsHumidifier Figures Page Chilled Water Systems System DescriptionsCompressorized Systems Glycool Chilled Glycol Cooling SystemsStart-Up Procedure Advanced microprocessor control panel BasicsAdvanced microprocessor a control for Challenger Main Menu MENU/ESC Status/Alarm DataStatus Display Analog Sensors Setpoints/SetupDefault setpoints and ranges Run Hours LogSetup Operation Setup SystemCalibrate Sensors Show DIP SwitchesSelect Options Alarm Delay seconds Setup AlarmsAlarm default time delays Default TimeHumidity HUM Control Method Standard Custom Alarm MessagesCalibrate Actuator Analog SetupSet Status Display Test Control Board Run DiagnosticsShow Inputs Test OutputsLCD Display Contrast Change PasswordsDate and Time Control Circuit BoardControl output LEDs DIP SwitchesNon-Volatile Memory Control OutputsOperation with Advanced Microprocessor with Graphics Control Advanced microprocessor with graphics control menu See 3.7.7 Set Status Display View/Set AlarmsSetup Alarms View Water Detect Floor Plan for Optional LTM1000/LT750 Setup Custom AlarmsSetup Water Detect Floor Plan View/Set Control Setpoints System SetupCold Start Delay Operating StatusChilled Water/Hot Water/Econ-O-Coil Flush Auto Restart DelayDefault Settings and Ranges IR Flush Overfill infrared humidifiers onlySelect Control Algorithm Chilled Water and SCR Reheats only Calibrate Valve ActuatorSelect Humidity Sensing Mode Run DiagnosticsShow Inputs Modify Plot Scales Setting optionsPlot Graphs View Run Hours Log Analog/Digital InputsLCD Contrast View 24 Hour Run Time HistoryView Total Run Hours Nonvolatile Memory PID Control Chilled Water or SCR Reheats only Temperature ControlCooling/Heating Required, in Percent % Response to Control Types Proportional ControlCooling/dehumidification load status response Glycool CoolingDual Cooling Source Chilled Water CoolingSCR Electric Reheat Requires Special Control Software Humidity ControlHeating Operation Electric Reheat Hot Water ReheatProportional Control Control TypesHumidification Operation System Activation Time between peaks x 5% Short Cycle Control Load Control FeaturesAdditional Features Connecting the Analog SensorsLT750 Environmental Unit Installation-LT750 DIP Switch SettingsFault Water Detection DisplayCalibration SetupPhysical Connections Liebert Monitoring Devices and Software CommunicationsChange Filter Standard AlarmsHigh Head Pressure Custom AlarmsHigh Temperature Compressor OverloadLow Temperature High Temperature and Low Temperature SimultaneouslyHumidifier Problem Infrared Humidifiers Loss of PowerOptional/Custom Alarms System Testing Liebert unit Recommended Liquitect location Floor drain FirestatSmoke Detector Water Detection SensorDistance From Unit Zone leak detection kit installation scenariosFilters Remote ShutdownAir Distribution Blower PackageFan Impellers and Bearings BeltSuperheat Refrigeration SystemSuction Pressure Discharge PressureHot Gas Bypass Valve Operation AdjustmentThermostatic Expansion Valve Operation Air Cooled Condenser Outdoor fan/condenser configurationValve spring guide Water/Glycol Cooled Condensers Coaxial CondenserRegulating Valve Adjusting Collar Nut Glycol Solution MaintenanceMechanical Failure Compressor ReplacementCompressor Functional Check Electrical Failure Compressor Replacement ProcedureRemoving the Pan Cleaning the PanHumidifier Infrared HumidifierSteam Generating Humidifier Autoflush Infrared Humidifier Cleaning SystemAutoflush Operation Autoflush ControlsControls Operation200-460 Replacing the CanisterHumidifier canister part numbers Part Capacity Number Voltage Lbs/hr kg/hrDrain Tempering Feature Circuit Board AdjustmentsSymptom Possible Cause Check or Remedy Blower troubleshootingChilled water troubleshooting Compressor and refrigeration system troubleshooting Compressor and refrigeration system troubleshooting See 6.4.8 Compressor Functional Check and Table Dehumidification troubleshootingGlycol pump troubleshooting Infrared humidifier troubleshootingSteam generating humidifier troubleshooting Reheat troubleshooting Air Cooled Condenser if applicable Filters Steam Generating HumidifierBlower Section CompressorElectrical Panel FiltersWater/Glycol Condenser if applicable Glycol PumpSemiannual Maintenance Inspection Checklist Page That Ne tIti Ti n
Related manuals
Manual 76 pages 48.63 Kb Manual 59 pages 52.87 Kb

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.