Liebert 3000 manual Autoflush Infrared Humidifier Cleaning System, Autoflush Operation

Page 62

Component Operation and Maintenance

Autoflush Infrared Humidifier Cleaning System

NOTE

To operate properly, the Autoflush Humidifier requires a water source that can deliver at least 1 gpm (0.063 l/s) with a minimum pressure of 20 psig (138 kPa).

The autoflush system will periodically flush the humidifier pan with water to prevent the buildup of water minerals due to saturation. Because water conditions vary, the amount of water flushing through the system may be programmed to match local needs.

Water amounts between 110% and 500% of the amount needed for humidification may be selected. Operation of the flushing system is then automatic and no further adjustments need to be made.

Autoflush Operation

The operation of the autoflush is divided into four steps, beginning with a call for humidification.

1.If the humidifier has not been activated for over 30 hours, the autoflush will flow water into the pan for about 30 seconds. This will provide a minimum amount of water in the pan and prevent heat damage to the humidifier pan. Humidifier lamps are OFF.

2.If the humidifier has been activated within the last 30 hours, Step 1 is bypassed. The autoflush will flow water into the pan for about 4 minutes. The humidifier lamps are on and the humidifier is operational during this period. When the pan is filled (the fill cycle has timed out), the water make-up valve is closed.

3.The water make-up valve remains OFF and the humidifier lamps are ON for a maximum of 9-1/2 minutes.

4.After the 9-1/2 minute delay, the autoflush adds water to the pan to replenish the water used in humidification and flush the pan of mineral solids. This amount of water is adjustable from 110% to 500% in increments of 10%. At the end of this cycle, the make-up valve is closed. Steps 3 and 4 repeat as long as humidification is required.

Autoflush Controls

Use the LCD display, menu, and keys on the front control panel to program the autoflush controls.

6.5.2Steam Generating Humidifier

Steam generating humidifiers are designed to operate in voltage ranges from 200 to 575 volts and generate 11 pounds (5 kg) of steam per hour. These humidifiers operate efficiently over a wide range of water quality conditions and automatically adjust to changes in the conductivity of water. The humidifiers drain and refill to maintain an amperage setpoint and alert the operator when the humidifier canister needs to be replaced. The humidifier is in the lower section of upflow units; it is in the middle section of downflow units.

Figure 13 Steam generating humidifier

54

Image 62
Contents Liebert Challenger Page Table of Contents Run Diagnostics Alarm Descriptions Component Operation and MaintenanceHumidifier Figures Page Glycool Chilled Glycol Cooling Systems System DescriptionsCompressorized Systems Chilled Water SystemsStart-Up Procedure Basics Advanced microprocessor control panelAdvanced microprocessor a control for Challenger Main Menu MENU/ESC Status/Alarm DataStatus Display Run Hours Log Setpoints/SetupDefault setpoints and ranges Analog SensorsSetup System Setup OperationCalibrate Sensors Show DIP SwitchesSelect Options Default Time Setup AlarmsAlarm default time delays Alarm Delay secondsStandard Custom Alarm Messages Humidity HUM Control MethodCalibrate Actuator Analog SetupSet Status Display Test Outputs Run DiagnosticsShow Inputs Test Control BoardControl Circuit Board Change PasswordsDate and Time LCD Display ContrastControl Outputs DIP SwitchesNon-Volatile Memory Control output LEDsOperation with Advanced Microprocessor with Graphics Control Advanced microprocessor with graphics control menu View/Set Alarms See 3.7.7 Set Status DisplaySetup Alarms View Water Detect Floor Plan for Optional LTM1000/LT750 Setup Custom AlarmsSetup Water Detect Floor Plan Operating Status System SetupCold Start Delay View/Set Control SetpointsIR Flush Overfill infrared humidifiers only Auto Restart DelayDefault Settings and Ranges Chilled Water/Hot Water/Econ-O-Coil FlushCalibrate Valve Actuator Select Control Algorithm Chilled Water and SCR Reheats onlyRun Diagnostics Select Humidity Sensing ModeShow Inputs Modify Plot Scales Setting optionsPlot Graphs Analog/Digital Inputs View Run Hours LogLCD Contrast View 24 Hour Run Time HistoryView Total Run Hours Nonvolatile Memory Response to Control Types Proportional Control Temperature ControlCooling/Heating Required, in Percent % PID Control Chilled Water or SCR Reheats onlyChilled Water Cooling Glycool CoolingDual Cooling Source Cooling/dehumidification load status responseHot Water Reheat Humidity ControlHeating Operation Electric Reheat SCR Electric Reheat Requires Special Control SoftwareProportional Control Control TypesHumidification Operation System Activation Time between peaks x 5% Connecting the Analog Sensors Load Control FeaturesAdditional Features Short Cycle ControlWater Detection Display Installation-LT750 DIP Switch SettingsFault LT750 Environmental UnitCalibration SetupPhysical Connections Communications Liebert Monitoring Devices and SoftwareStandard Alarms Change FilterCompressor Overload Custom AlarmsHigh Temperature High Head PressureLoss of Power High Temperature and Low Temperature SimultaneouslyHumidifier Problem Infrared Humidifiers Low TemperatureOptional/Custom Alarms System Testing Water Detection Sensor FirestatSmoke Detector Liebert unit Recommended Liquitect location Floor drainRemote Shutdown Zone leak detection kit installation scenariosFilters Distance From UnitBelt Blower PackageFan Impellers and Bearings Air DistributionDischarge Pressure Refrigeration SystemSuction Pressure SuperheatHot Gas Bypass Valve Operation AdjustmentThermostatic Expansion Valve Operation Outdoor fan/condenser configuration Air Cooled CondenserValve spring guide Water/Glycol Cooled Condensers Coaxial CondenserRegulating Valve Glycol Solution Maintenance Adjusting Collar NutMechanical Failure Compressor ReplacementCompressor Functional Check Compressor Replacement Procedure Electrical FailureInfrared Humidifier Cleaning the PanHumidifier Removing the PanAutoflush Controls Autoflush Infrared Humidifier Cleaning SystemAutoflush Operation Steam Generating HumidifierOperation ControlsPart Capacity Number Voltage Lbs/hr kg/hr Replacing the CanisterHumidifier canister part numbers 200-460Circuit Board Adjustments Drain Tempering FeatureSymptom Possible Cause Check or Remedy Blower troubleshootingChilled water troubleshooting Compressor and refrigeration system troubleshooting Compressor and refrigeration system troubleshooting Infrared humidifier troubleshooting Dehumidification troubleshootingGlycol pump troubleshooting See 6.4.8 Compressor Functional Check and TableSteam generating humidifier troubleshooting Reheat troubleshooting Compressor Filters Steam Generating HumidifierBlower Section Air Cooled Condenser if applicableGlycol Pump FiltersWater/Glycol Condenser if applicable Electrical PanelSemiannual Maintenance Inspection Checklist Page Ti n Ne tIti That
Related manuals
Manual 76 pages 48.63 Kb Manual 59 pages 52.87 Kb

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.