Liebert Comprehensive Humidifier Troubleshooting Guide for Infrared Models

Page 29

Operation with Advanced Microprocessor with Graphics Control

Auto Restart Delay

This feature allows for the unit to restart automatically after a loss of power. The programmed value is .1 minute (6 seconds) intervals. A programmed value of zero (0) would require the user to manually press the ON/OFF switch to start the unit, i.e. no auto restart. The purpose of this feature is to pre- vent several units from starting at the same time after a loss of power. The message “Restart Delay -- Please Wait” will be displayed when the system is in the auto restart mode. Liebert suggests pro- gramming multiple unit installations with different auto restart times.

IR Flush Overfill (infrared humidifiers only)

An autoflush system automatically controls a water makeup valve to maintain proper level in the infrared humidifier water pan during humidifier operation. If humidification is needed and 30 hours have elapsed since the last time the humidifier was on, then the humidifier is held off until the valve completes an initial fill of the humidifier pan. This pre-fill is about 15 seconds. The valve continues to fill and flush the pan for about 4 minutes.

During humidifier operation, with the flush rate set at the default of 150%, the valve is opened peri- odically to add water to the pan (about 40 seconds for every 9-1/2 minutes of humidifier operation). This adds enough water to the pan to cause about a third of the total water used to be flushed out the overflow standpipe located in the humidifier pan. This flushing action helps remove solids from the pan. The flush rate is adjustable from 110% to 500%. If the water quality is poor, it may be desirable to increase the water flushing action above the normal 150% rate. Also, if the supply water pressure is low, the flush rate adjustment can be increased so that sufficient water level is maintained during humidification.

Chilled Water/Hot Water/Econ-O-Coil Flush

This feature will flush the respective coil for 3 minutes after the programmed number of hours of non-use. For example, if the flush time is programmed with 24 hours on a hot water reheat type sys- tem, and heating is not required for a 24 hour period, the hot water valve will be opened for 3 minutes to allow the coil to be flushed. The programmed value can be from 0 (no flush) to 99 (99 hours of non-use).

Display in Degrees

The control can be set to display readings and setpoints in either degrees Fahrenheit (F) or Celsius (C).

Default Settings and Ranges

The following table lists the setup functions, their factory default values, and the allowable ranges for which they can be programmed.

Table 9

Setup functions, default values and ranges

 

 

 

 

 

Function

Default

Range

 

 

 

Cold Start Time Delay*

3

0 to 3 min (0 = no delay)

 

 

 

Restart Time Delay

0.1

0 to 9.9 min (0 = manual restart)

 

 

 

Infrared Fill Rate

150

110 to 500%

 

 

 

Chilled/Hot Water Coil Flush

24

0 to 99 hrs (also Econ-O-Coil)

 

 

 

C/F Degrees

F

C or F

 

 

 

 

*Factory set to 0 for water cooled, glycol, and GLYCOOL units.

21

Image 29
Contents Liebert Challenger Page Table of Contents Run Diagnostics Component Operation and Maintenance Alarm DescriptionsHumidifier Figures Page Compressorized Systems System DescriptionsGlycool Chilled Glycol Cooling Systems Chilled Water SystemsStart-Up Procedure Advanced microprocessor control panel BasicsAdvanced microprocessor a control for Challenger Main Menu MENU/ESC Status/Alarm DataStatus Display Default setpoints and ranges Setpoints/SetupRun Hours Log Analog SensorsSetup Operation Setup SystemCalibrate Sensors Show DIP SwitchesSelect Options Alarm default time delays Setup AlarmsDefault Time Alarm Delay secondsHumidity HUM Control Method Standard Custom Alarm MessagesCalibrate Actuator Analog SetupSet Status Display Show Inputs Run DiagnosticsTest Outputs Test Control BoardDate and Time Change PasswordsControl Circuit Board LCD Display ContrastNon-Volatile Memory DIP SwitchesControl Outputs Control output LEDsOperation with Advanced Microprocessor with Graphics Control Advanced microprocessor with graphics control menu See 3.7.7 Set Status Display View/Set AlarmsSetup Alarms View Water Detect Floor Plan for Optional LTM1000/LT750 Setup Custom AlarmsSetup Water Detect Floor Plan Cold Start Delay System SetupOperating Status View/Set Control SetpointsDefault Settings and Ranges Auto Restart DelayIR Flush Overfill infrared humidifiers only Chilled Water/Hot Water/Econ-O-Coil FlushSelect Control Algorithm Chilled Water and SCR Reheats only Calibrate Valve ActuatorSelect Humidity Sensing Mode Run DiagnosticsShow Inputs Modify Plot Scales Setting optionsPlot Graphs View Run Hours Log Analog/Digital InputsLCD Contrast View 24 Hour Run Time HistoryView Total Run Hours Nonvolatile Memory Cooling/Heating Required, in Percent % Temperature ControlResponse to Control Types Proportional Control PID Control Chilled Water or SCR Reheats onlyDual Cooling Source Glycool CoolingChilled Water Cooling Cooling/dehumidification load status responseHeating Operation Electric Reheat Humidity ControlHot Water Reheat SCR Electric Reheat Requires Special Control SoftwareProportional Control Control TypesHumidification Operation System Activation Time between peaks x 5% Additional Features Load Control FeaturesConnecting the Analog Sensors Short Cycle ControlFault Installation-LT750 DIP Switch SettingsWater Detection Display LT750 Environmental UnitCalibration SetupPhysical Connections Liebert Monitoring Devices and Software CommunicationsChange Filter Standard AlarmsHigh Temperature Custom AlarmsCompressor Overload High Head PressureHumidifier Problem Infrared Humidifiers High Temperature and Low Temperature SimultaneouslyLoss of Power Low TemperatureOptional/Custom Alarms System Testing Smoke Detector FirestatWater Detection Sensor Liebert unit Recommended Liquitect location Floor drainFilters Zone leak detection kit installation scenariosRemote Shutdown Distance From UnitFan Impellers and Bearings Blower PackageBelt Air DistributionSuction Pressure Refrigeration SystemDischarge Pressure SuperheatHot Gas Bypass Valve Operation AdjustmentThermostatic Expansion Valve Operation Air Cooled Condenser Outdoor fan/condenser configurationValve spring guide Water/Glycol Cooled Condensers Coaxial CondenserRegulating Valve Adjusting Collar Nut Glycol Solution MaintenanceMechanical Failure Compressor ReplacementCompressor Functional Check Electrical Failure Compressor Replacement ProcedureHumidifier Cleaning the PanInfrared Humidifier Removing the PanAutoflush Operation Autoflush Infrared Humidifier Cleaning SystemAutoflush Controls Steam Generating HumidifierControls OperationHumidifier canister part numbers Replacing the CanisterPart Capacity Number Voltage Lbs/hr kg/hr 200-460Drain Tempering Feature Circuit Board AdjustmentsSymptom Possible Cause Check or Remedy Blower troubleshootingChilled water troubleshooting Compressor and refrigeration system troubleshooting Compressor and refrigeration system troubleshooting Glycol pump troubleshooting Dehumidification troubleshootingInfrared humidifier troubleshooting See 6.4.8 Compressor Functional Check and TableSteam generating humidifier troubleshooting Reheat troubleshooting Blower Section Filters Steam Generating HumidifierCompressor Air Cooled Condenser if applicableWater/Glycol Condenser if applicable FiltersGlycol Pump Electrical PanelSemiannual Maintenance Inspection Checklist Page Iti Ne tTi n That
Related manuals
Manual 76 pages 48.63 Kb Manual 59 pages 52.87 Kb

3000 specifications

The Liebert 3000 is a cutting-edge power protection solution designed to provide reliable and efficient backup power for critical applications. This uninterruptible power supply (UPS) system is engineered to safeguard sensitive electronic equipment from power disturbances, ensuring uninterrupted operations in data centers, telecommunications, and industrial environments.

One of the standout features of the Liebert 3000 is its high-efficiency design. With an efficiency rating of up to 94%, the system minimizes energy loss, resulting in lower operational costs and a reduced carbon footprint. This is particularly important in today's environmentally conscious climate, as organizations strive to meet sustainability goals while maintaining top-tier performance.

The Liebert 3000 employs advanced technologies to enhance its functionality. It incorporates online double-conversion technology, which provides a continuous supply of clean and regulated power. This technology ensures that connected loads receive stable voltage and frequency, shielding them from voltage spikes, sags, and outages. Additionally, the UPS offers features such as automatic battery testing, which helps ensure peak battery performance and reliability.

Another key characteristic of the Liebert 3000 is its modular design, allowing for flexible scalability. This means that organizations can easily expand the capacity of their UPS system as their power needs grow, without the need for extensive system overhauls. The modular architecture also facilitates simplified maintenance and reduces downtime, as individual modules can be serviced without interrupting power to the critical load.

The system is equipped with comprehensive monitoring and management capabilities. The Liebert 3000 provides real-time data on power usage, battery status, and system performance, enabling facility managers to make informed decisions and proactively address potential issues. The integration of remote management tools allows for seamless monitoring from anywhere, providing peace of mind for operators.

Overall, the Liebert 3000 combines high efficiency, advanced technology, and flexible design to deliver a robust power protection solution. Its reliability and performance make it a preferred choice for organizations seeking to protect their critical infrastructure while enhancing operational efficiency and sustainability. As businesses continue to rely on technology for their everyday operations, the Liebert 3000 stands out as a dependable safeguard against the uncertainties of power quality.