Bryant F, 580J*08--14D appendix Pre-Start-Up, START-UP, General, Unit Preparation, Gas Piping

Page 62

580J

PRE-START-UP

!WARNING

PERSONAL INJURY HAZARD

Failure to follow this warning could result in personal injury or death.

1.Follow recognized safety practices and wear protective goggles when checking or servicing refrigerant system.

2.Do not operate compressor or provide any electric power to unit unless compressor terminal cover is in place and secured.

3.Do not remove compressor terminal cover until all electrical sources are disconnected.

4.Relieve all pressure from system before touching or disturbing anything inside terminal box if refrigerant leak is suspected around compressor terminals.

5.Never attempt to repair soldered connection while refrigerant system is under pressure.

6.Do not use torch to remove any component. System contains oil and refrigerant under pressure. To remove a component, wear protective goggles and proceed as follows:

a.Shut off electrical power and then gas to unit.

b.Recover refrigerant to relieve all pressure from system using both high-pressure and low pressure ports.

c.Cut component connection tubing with tubing cutter and remove component from unit.

d.Carefully unsweat remaining tubing stubs when necessary. Oil can ignite when exposed to torch flame.

!WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

The unit must be electrically grounded in accordance with local codes and NEC ANSI/NFPA 70 (American National Standards Institute/National Fire Protection Association).

Proceed as follows to inspect and prepare the unit for initial start-up:

1.Remove all access panels.

2.Read and follow instructions on all WARNING, CAUTION, and INFORMATION labels attached to, or shipped with, unit.

!WARNING

PERSONAL INJURY AND ENVIRONMENTAL HAZARD

Failure to follow this warning could result in personal injury or death.

Relieve pressure and recover all refrigerant before system repair or final unit disposal.

Wear safety glasses and gloves when handling refrigerants.

Keep torches and other ignition sources away from refrigerants and oils.

3.Make the following inspections:

a.Inspect for shipping and handling damages such as broken lines, loose parts, or disconnected wires, etc.

b.Inspect for oil at all refrigerant tubing connections and on unit base. Detecting oil generally indicates a refrigerant leak. Leak-test all refrigerant tubing connections using electronic leak detector, halide torch, or liquid-soap solution.

c.Inspect all field-wiring and factory-wiring connections. Be sure that connections are completed and tight. Be sure that wires are not in contact with refrigerant tubing or sharp edges.

d.Inspect coil fins. If damaged during shipping and handling, carefully straighten fins with a fin comb.

4.Verify the following conditions:

a.Make sure that condenser-fan blade are correctly positioned in fan orifice. See Condenser-Fan Adjustment section for more details.

b.Make sure that air filter(s) is in place.

c.Make sure that condensate drain trap is filled with water to ensure proper drainage.

d.Make sure that all tools and miscellaneous loose parts have been removed.

START-UP, GENERAL

Unit Preparation

Make sure that unit has been installed in accordance with installation instructions and applicable codes.

Gas Piping

Check gas piping for leaks.

62

Image 62
Contents Table of Contents Safety ConsiderationsWhat to do if you smell gas Unit Arrangement and AccessGeneral Routine Maintenance Seasonal MaintenanceManual Outside Air Hood Screen Supply FAN Blower SectionSupply Fan Belt-Drive Adjustable-Pitch Pulley on Motor Supply-Fan Pulley Adjustment BearingsCondenser Coil Coil Maintenance and Cleaning RecommendationCooling Evaporator CoilRoutine Cleaning of Novation Condenser Coil Surfaces Routine Cleaning of Evaporator Coil SurfacesEvaporator Coil Metering Devices Refrigerant System Pressure Access PortsPuronr R-410A Refrigerant Refrigerant ChargeSeatcore Cooling Charging Charts Cooling Charging Charts 08D,F Both CircuitsCooling Charging Charts 12D,F Both Circuits TON Circuit TON Circuit Cooling Service Analysis Problem Cause RemedyTroubleshooting Cooling System Condenser-Fan Adjustment 08D-12D,F sizeCondenser-Fan Adjustment 14D,F size CompressorsUnit-Powered Type Installing Weatherproof CoverNon-Powered Type Convenience OutletsSmoke Detectors Supply Air SensorSmoke Detector Locations Return Air Without Economizer Completing Installation of Return Air Smoke SensorFiop Smoke Detector Wiring and Response All UnitsSensor and Controller Tests Dirty Controller Test Procedure Controller Alarm TestController Alarm Test Procedure Dirty Sensor Test ProcedureRemote Test/Reset Station Dirty Sensor Test Detector CleaningSD-TRK4 Remote Alarm Test Procedure Dirty Sensor Test Using an SD-TRK4Troubleshooting Protective Devices Compressor ProtectionFuel Types and Pressures GAS Heating SystemControl Circuit Combustion-Air Blower Supply Pressure SwitchFlue Gas Passageways Liquid Propane Supply Line Pressure RangesOrifice Projection Burners and IgnitersMain Burners Limit Switch Cleaning and AdjustmentCheck Unit Operation and Make Necessary Adjustments Burner Ignition LED Error Code DescriptionLED Indication Error Code Description Orifice Replacement Gas ValveRed LED-Status LP Orifice Orifice SizesAltitude Compensation Heating Service Analysis Troubleshooting Heating SystemMinimum Heating Entering Air Temperature IGC Board LED Alarm Codes IGCRTU-MP Control System Condenser Coil ServiceRepairing Novation Condenser Tube Leaks Replacing Novation Condenser CoilRTU-MP Multi-Protocol Control Board Typical RTU-MP System Control Wiring Diagram RTU-MP Controller Inputs and Outputs Supply Air Temperature SAT SensorOutdoor Air Temperature OAT Sensor OutputsConnect T-55 Space Temperature SPT SensorsEconoMi$er Economizer Controls Outdoor Air Enthalpy Control PNO HH57AC077Return Air Enthalpy Sensor Wiring the Indoor Air Quality SensorDifferential Enthalpy Control Indoor Air Quality CO2 SensorWeatherproof Enclosure Connecting Discrete InputsOutdoor Air Quality Sensor PNO 33ZCSENCO2 plus Filter StatusPower Exhaust output Communication Wiring ProtocolsProtocol DS8 DS7 DS6 DS5 DS4 DS3 DS2 DS1 RTU-MP TroubleshootingCommunication LEDs Baud Rate DS2 DS1LEDs LEDs on the RTU-MP show the status of certain functionsTroubleshooting Alarms Alarms BACnet MS/TPModule Status Report Modstat Example Manufacture Date Basic Protocol TroubleshootingModbus Code Name MeaningECONOMI$ER Systems EconoMi$er IV Component LocationsEconoMi$er IV Wiring EconoMi$er IV Input/Output Logic EconoMi$er IV Functional ViewEconoMi$er IV Control Modes Supply Air Temperature SAT SensorOutdoor Air Lockout Sensor Outdoor Dry Bulb ChangeoverDifferential Dry Bulb Control Outdoor Enthalpy ChangeoverMinimum Position Control Exhaust Setpoint AdjustmentIndoor Air Quality IAQ Sensor Input Demand Control Ventilation DCV Damper MovementThermostats Analog CO2 CO2 Sensor ConfigurationCO2 Sensor Standard Settings EconoMi$er IV Preparation DCV Demand Controlled Ventilation and Power ExhaustEconoMi$er IV Sensor Usage Differential EnthalpyDCV Minimum and Maximum Position Wiring DiagramsEconoMi$er IV Troubleshooting Completion Supply-Air Sensor Input580J Typical Unit Wiring Diagram Power 08D,F, 208/230-3-60 C09157 Unit Preparation PRE-START-UPSTART-UP, General Gas PipingReturn-Air Filters Internal WiringRefrigerant Service Ports Outdoor-Air Inlet ScreensUnit Start Delay Field Service TestConfiguration START-UP, RTU-MP ControlCompressor1 Service Hours Filter Service HoursSupply Fan Service Hours Compressor2 Service HoursInput 1 Function InputSpace Sensor Type Input 2 FunctionHeating, Units Without Economizer Operating SequencesBase Unit Controls Cooling, Units Without Economizer Cooling, Unit With EconoMi$erSupplemental Controls Heating With EconoMi$erDemand Controlled Ventilation RTU-MP Sequence of OperationLocal Schedule Always Occupied Default OccupancyScheduling BACnet ScheduleEconomizer Power ExhaustCooling Demand Limit Fastener Torque ValuesIndoor Air Quality Torque ValuesSerial Number Format Appendix I. Model Number SignificanceModel Number Nomenclature Position Number12.5TONS Appendix II. Physical DataPhysical Data 580J**08 580J**12 580J**14 Gas Connection Heat Anticipator Setting AmpsPhysical Data Heating 12.5TONS Natural Gas Heat, Liquid Propane HeatCFM RPM BHP Appendix III. FAN Performance580J**08 580J**12 579580J**14 RPM BHPGeneral fan performance notes 1260Pulley Adjustment Unit MOTOR/DRIVE Motor Pulley Turns Open ComboElectrical Information Type DISC. Size Unit Combustion PowerNOM IFM FAN Motor Exhaust No P.E MocpAppendix IV. Wiring Diagram List Wiring DiagramsAppendix V. Motormaster Sensor Locations Catalog No.SM580J---02580J Unit START-UP Checklist Preliminary Information

580J*08--14D, F specifications

The Bryant F,580J*08--14D is an advanced heating and cooling system engineered for optimal performance and energy efficiency in residential and commercial applications. This innovative unit is designed to provide exceptional climate control while reducing operational costs, making it an ideal choice for those seeking reliable HVAC solutions.

One of the standout features of the Bryant F,580J*08--14D is its versatile heating and cooling capabilities. This system employs a two-stage compressor, which allows for precise temperature regulation and improved energy efficiency. This dual-stage operation ensures that the system can adapt to varying environmental conditions, providing enhanced comfort without excessive energy use.

The system is equipped with advanced inverter technology, which enables smoother operation and quieter performance. This technology adjusts the compressor speed based on the heating or cooling demand, leading to increased efficiency and reduced energy consumption. Additionally, the inverter system contributes to less noise during operation, creating a serene indoor environment.

The Bryant F,580J*08--14D also features a user-friendly thermostat that allows for easy temperature adjustments and scheduling. This smart thermostat is compatible with mobile devices, enabling users to monitor and control their HVAC system remotely. This feature provides added convenience and ensures that the system is operating efficiently, even when homeowners are away.

Energy efficiency is a hallmark of the Bryant F,580J*08--14D. The system meets and often exceeds ENERGY STARĀ® standards, making it one of the more eco-friendly options available in the market today. By utilizing energy-saving technologies and innovative designs, the system helps to lower utility bills and reduce the environmental impact.

Durability and reliability are key characteristics of the Bryant F,580J*08--14D. Constructed with high-quality materials and components, this unit is designed to withstand the rigors of changing weather conditions while maintaining consistent performance. Additionally, it comes equipped with a robust warranty, providing peace of mind for users investing in this heating and cooling solution.

In summary, the Bryant F,580J*08--14D is a top-tier HVAC system that boasts advanced technologies, exceptional energy efficiency, and user-friendly features. Its combination of reliable performance and modern conveniences makes it a standout choice for anyone looking to enhance their home's or business's climate control system, providing comfort and savings for years to come.