Bryant F, 580J*08--14D appendix Damper Movement, Thermostats, Demand Control Ventilation DCV

Page 56

580J

Adjust the minimum position potentiometer to allow the minimum amount of outdoor air, as required by local codes, to enter the building. Make minimum position adjustments with at least 10_F temperature difference between the outdoor and return-air temperatures.

To determine the minimum position setting, perform the following procedure:

1.Calculate the appropriate mixed air temperature using the following formula:

(TO x 100OA ) + (TR x 100RA ) =TM

TO = Outdoor-Air Temperature

OA = Percent of Outdoor Air

TR = Return-Air Temperature

RA = Percent of Return Air

TM = Mixed-Air Temperature

As an example, if local codes require 10% outdoor air during occupied conditions, outdoor-air temperature is 60_F, and return-air temperature is 75_F.

(60 x .10) + (75 x .90) = 73.5_F

2.Disconnect the supply air sensor from terminals T and T1.

3.Ensure that the factory-installed jumper is in place across terminals P and P1. If remote damper positioning is being used, make sure that the terminals are wired according to Fig. 62 and that the minimum position potentiometer is turned fully clockwise.

4.Connect 24 vac across terminals TR and TR1.

5.Carefully adjust the minimum position potentiometer until the measured mixed air temperature matches the calculated value.

6.Reconnect the supply air sensor to terminals T and T1.

Remote control of the EconoMi$er IV damper is desirable when requiring additional temporary ventilation. If a field-supplied remote potentiometer (Honeywell part number S963B1128) is wired to the EconoMi$er IV controller, the minimum position of the damper can be controlled from a remote location.

To control the minimum damper position remotely, remove the factory-installed jumper on the P and P1 terminals on the EconoMi$er IV controller. Wire the field-supplied potentiometer to the P and P1 terminals on the EconoMi$er IV controller. (See Fig. 62.)

Damper Movement

Damper movement from full open to full closed (or vice versa) takes 2-1/2minutes.

Thermostats

The EconoMi$er IV control works with conventional thermostats that have a Y1 (cool stage 1), Y2 (cool stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). The EconoMi$er IV control does not support space temperature sensors. Connections are made at the thermostat terminal connection board located in the main control box.

Demand Control Ventilation (DCV)

When using the EconoMi$er IV for demand controlled ventilation, there are some equipment selection criteria which should be considered. When selecting the heat capacity and cool capacity of the equipment, the maximum ventilation rate must be evaluated for design conditions. The maximum damper position must be calculated to provide the desired fresh air.

Typically the maximum ventilation rate will be about 5 to 10% more than the typical cfm required per person, using normal outside air design criteria.

A proportional anticipatory strategy should be taken with the following conditions: a zone with a large area, varied occupancy, and equipment that cannot exceed the required ventilation rate at design conditions. Exceeding the required ventilation rate means the equipment can condition air at a maximum ventilation rate that is greater than the required ventilation rate for maximum occupancy. A proportional-anticipatory strategy will cause the fresh air supplied to increase as the room CO2 level increases even though the CO2 setpoint has not been reached. By the time the CO2 level reaches the setpoint, the damper will be at maximum ventilation and should maintain the setpoint.

In order to have the CO2 sensor control the economizer damper in this manner, first determine the damper voltage output for minimum or base ventilation. Base ventilation is the ventilation required to remove contaminants during unoccupied periods. The following equation may be used to determine the percent of outside air entering the building for a given damper position. For best results there should be at least a 10 degree difference in outside and return-air temperatures.

(TO x 100OA ) + (TR x 100RA ) =TM

TO = Outdoor-Air Temperature

OA = Percent of Outdoor Air

TR = Return-Air Temperature

RA = Percent of Return Air

TM = Mixed-Air Temperature

Once base ventilation has been determined, set the minimum damper position potentiometer to the correct position.

56

Image 56
Contents Table of Contents Safety ConsiderationsWhat to do if you smell gas Unit Arrangement and AccessGeneral Routine Maintenance Seasonal MaintenanceManual Outside Air Hood Screen Supply FAN Blower SectionSupply Fan Belt-Drive Adjustable-Pitch Pulley on Motor Supply-Fan Pulley Adjustment BearingsCoil Maintenance and Cleaning Recommendation CoolingCondenser Coil Evaporator CoilRoutine Cleaning of Novation Condenser Coil Surfaces Routine Cleaning of Evaporator Coil SurfacesRefrigerant System Pressure Access Ports Puronr R-410A RefrigerantEvaporator Coil Metering Devices Refrigerant ChargeSeatcore Cooling Charging Charts Cooling Charging Charts 08D,F Both CircuitsCooling Charging Charts 12D,F Both Circuits TON Circuit TON Circuit Cooling Service Analysis Problem Cause RemedyCondenser-Fan Adjustment 08D-12D,F size Condenser-Fan Adjustment 14D,F sizeTroubleshooting Cooling System CompressorsInstalling Weatherproof Cover Non-Powered TypeUnit-Powered Type Convenience OutletsSmoke Detectors Supply Air SensorSmoke Detector Locations Completing Installation of Return Air Smoke Sensor Fiop Smoke Detector Wiring and ResponseReturn Air Without Economizer All UnitsSensor and Controller Tests Controller Alarm Test Controller Alarm Test ProcedureDirty Controller Test Procedure Dirty Sensor Test ProcedureDetector Cleaning SD-TRK4 Remote Alarm Test ProcedureRemote Test/Reset Station Dirty Sensor Test Dirty Sensor Test Using an SD-TRK4Troubleshooting Protective Devices Compressor ProtectionFuel Types and Pressures GAS Heating SystemControl Circuit Supply Pressure Switch Flue Gas PassagewaysCombustion-Air Blower Liquid Propane Supply Line Pressure RangesOrifice Projection Burners and IgnitersMain Burners Limit Switch Cleaning and AdjustmentCheck Unit Operation and Make Necessary Adjustments Burner Ignition LED Error Code DescriptionLED Indication Error Code Description Orifice Replacement Gas ValveRed LED-Status LP Orifice Orifice SizesAltitude Compensation Heating Service Analysis Troubleshooting Heating SystemMinimum Heating Entering Air Temperature IGC Board LED Alarm Codes IGCCondenser Coil Service Repairing Novation Condenser Tube LeaksRTU-MP Control System Replacing Novation Condenser CoilRTU-MP Multi-Protocol Control Board Typical RTU-MP System Control Wiring Diagram Supply Air Temperature SAT Sensor Outdoor Air Temperature OAT SensorRTU-MP Controller Inputs and Outputs OutputsConnect T-55 Space Temperature SPT SensorsEconoMi$er Economizer Controls Outdoor Air Enthalpy Control PNO HH57AC077Wiring the Indoor Air Quality Sensor Differential Enthalpy ControlReturn Air Enthalpy Sensor Indoor Air Quality CO2 SensorConnecting Discrete Inputs Outdoor Air Quality Sensor PNO 33ZCSENCO2 plusWeatherproof Enclosure Filter StatusPower Exhaust output Communication Wiring ProtocolsRTU-MP Troubleshooting Communication LEDsProtocol DS8 DS7 DS6 DS5 DS4 DS3 DS2 DS1 Baud Rate DS2 DS1LEDs LEDs on the RTU-MP show the status of certain functionsTroubleshooting Alarms Alarms BACnet MS/TPModule Status Report Modstat Example Basic Protocol Troubleshooting ModbusManufacture Date Code Name MeaningECONOMI$ER Systems EconoMi$er IV Component LocationsEconoMi$er IV Wiring EconoMi$er IV Input/Output Logic EconoMi$er IV Functional ViewSupply Air Temperature SAT Sensor Outdoor Air Lockout SensorEconoMi$er IV Control Modes Outdoor Dry Bulb ChangeoverDifferential Dry Bulb Control Outdoor Enthalpy ChangeoverMinimum Position Control Exhaust Setpoint AdjustmentIndoor Air Quality IAQ Sensor Input Demand Control Ventilation DCV Damper MovementThermostats Analog CO2 CO2 Sensor ConfigurationCO2 Sensor Standard Settings DCV Demand Controlled Ventilation and Power Exhaust EconoMi$er IV Sensor UsageEconoMi$er IV Preparation Differential EnthalpyWiring Diagrams EconoMi$er IV Troubleshooting CompletionDCV Minimum and Maximum Position Supply-Air Sensor Input580J Typical Unit Wiring Diagram Power 08D,F, 208/230-3-60 C09157 PRE-START-UP START-UP, GeneralUnit Preparation Gas PipingInternal Wiring Refrigerant Service PortsReturn-Air Filters Outdoor-Air Inlet ScreensField Service Test ConfigurationUnit Start Delay START-UP, RTU-MP ControlFilter Service Hours Supply Fan Service HoursCompressor1 Service Hours Compressor2 Service HoursInput Space Sensor TypeInput 1 Function Input 2 FunctionOperating Sequences Base Unit Controls Cooling, Units Without EconomizerHeating, Units Without Economizer Cooling, Unit With EconoMi$erHeating With EconoMi$er Demand Controlled VentilationSupplemental Controls RTU-MP Sequence of OperationAlways Occupied Default Occupancy SchedulingLocal Schedule BACnet ScheduleEconomizer Power ExhaustCooling Fastener Torque Values Indoor Air QualityDemand Limit Torque ValuesAppendix I. Model Number Significance Model Number NomenclatureSerial Number Format Position Number12.5TONS Appendix II. Physical DataPhysical Data Heat Anticipator Setting Amps Physical Data Heating 12.5TONS580J**08 580J**12 580J**14 Gas Connection Natural Gas Heat, Liquid Propane HeatCFM RPM BHP Appendix III. FAN Performance580J**08 580J**12 579580J**14 RPM BHPGeneral fan performance notes 1260Pulley Adjustment Unit MOTOR/DRIVE Motor Pulley Turns Open ComboElectrical Information Unit Combustion Power NOM IFM FAN Motor Exhaust No P.EType DISC. Size MocpAppendix IV. Wiring Diagram List Wiring DiagramsAppendix V. Motormaster Sensor Locations Catalog No.SM580J---02580J Unit START-UP Checklist Preliminary Information

580J*08--14D, F specifications

The Bryant F,580J*08--14D is an advanced heating and cooling system engineered for optimal performance and energy efficiency in residential and commercial applications. This innovative unit is designed to provide exceptional climate control while reducing operational costs, making it an ideal choice for those seeking reliable HVAC solutions.

One of the standout features of the Bryant F,580J*08--14D is its versatile heating and cooling capabilities. This system employs a two-stage compressor, which allows for precise temperature regulation and improved energy efficiency. This dual-stage operation ensures that the system can adapt to varying environmental conditions, providing enhanced comfort without excessive energy use.

The system is equipped with advanced inverter technology, which enables smoother operation and quieter performance. This technology adjusts the compressor speed based on the heating or cooling demand, leading to increased efficiency and reduced energy consumption. Additionally, the inverter system contributes to less noise during operation, creating a serene indoor environment.

The Bryant F,580J*08--14D also features a user-friendly thermostat that allows for easy temperature adjustments and scheduling. This smart thermostat is compatible with mobile devices, enabling users to monitor and control their HVAC system remotely. This feature provides added convenience and ensures that the system is operating efficiently, even when homeowners are away.

Energy efficiency is a hallmark of the Bryant F,580J*08--14D. The system meets and often exceeds ENERGY STARĀ® standards, making it one of the more eco-friendly options available in the market today. By utilizing energy-saving technologies and innovative designs, the system helps to lower utility bills and reduce the environmental impact.

Durability and reliability are key characteristics of the Bryant F,580J*08--14D. Constructed with high-quality materials and components, this unit is designed to withstand the rigors of changing weather conditions while maintaining consistent performance. Additionally, it comes equipped with a robust warranty, providing peace of mind for users investing in this heating and cooling solution.

In summary, the Bryant F,580J*08--14D is a top-tier HVAC system that boasts advanced technologies, exceptional energy efficiency, and user-friendly features. Its combination of reliable performance and modern conveniences makes it a standout choice for anyone looking to enhance their home's or business's climate control system, providing comfort and savings for years to come.