Carrier Official Maintenance Manual for Models with Focus on 19XR and 19XRV Refrigerant Float System

Page 74

Inspect Refrigerant Float System — Perform this inspection every 5 years or when the condenser is opened for service.

1.Transfer the refrigerant into the cooler vessel or into a pumpout storage tank.

2.Remove the float access cover.

3.Clean the chamber and valve assembly thoroughly. Be sure the valve moves freely. Ensure that all openings are free of obstructions.

4.Examine the cover gasket and replace if necessary.

See Fig. 38 for a view of the float valve design. For linear float valve designs, inspect the orientation of the float slide pin. It must be pointed toward the bubbler tube for proper operation.

Inspect Relief Valves and Piping — The relief valves on this chiller protect the system against the potentially danger- ous effects of overpressure. To ensure against damage to the equipment and possible injury to personnel, these devices must be kept in peak operating condition.

As a minimum, the following maintenance is required.

1.At least once a year, disconnect the vent piping at the valve outlet and carefully inspect the valve body and mechanism for any evidence of internal corrosion or rust, dirt, scale, leakage, etc.

2.If corrosion or foreign material is found, do not attempt to repair or recondition. Replace the valve.

3.If the chiller is installed in a corrosive atmosphere or the relief valves are vented into a corrosive atmosphere, in- spect the relief valves at more frequent intervals.

LEGEND

1Refrigerant Inlet from FLASC Chamber

2Linear Float Assembly

3Float Screen

4Bubble Line

5Float Cover

6Bubble Line Connection

7Refrigerant Outlet to Cooler

8Gasket

Fig. 38 — 19XR Float Valve Design

Compressor Bearing and Gear Maintenance —

The key to good bearing and gear maintenance is proper lubrication. Use the proper grade of oil, maintained at rec- ommended level, temperature, and pressure. Inspect the lubrication system regularly and thoroughly.

To inspect the bearings, a complete compressor teardown is required. Only a trained service technician should remove and examine the bearings. The cover plate on older compressor bases was used for factory-test purposes and is not usable for bearing or gear inspection. The bearings and gears should be examined on a scheduled basis for signs of wear. The frequency of examination is determined by the hours of chiller operation, load conditions during operation, and the condition of the oil and the lubrication system. Excessive bearing wear can sometimes be detected through increased vibration or increased bearing temperature. If either symptom appears, con- tact an experienced and responsible service organization for assistance.

Inspect the Heat Exchanger Tubes and Flow Devices

COOLER AND FLOW DEVICES — Inspect and clean the cooler tubes at the end of the first operating season. Because these tubes have internal ridges, a rotary-type tube cleaning system is needed to fully clean the tubes. Inspect the tubes’ condition to determine the scheduled frequency for future cleaning and to determine whether water treatment in the chilled water/brine circuit is adequate. Inspect the entering and leaving chilled water temperature sensors and flow devices for signs of corrosion or scale. Replace a sensor or Schrader fitting if corroded or remove any scale if found.

CONDENSER AND FLOW DEVICES — Since this water circuit is usually an open-type system, the tubes may be subject to contamination and scale. Clean the condenser tubes with a rotary tube cleaning system at least once per year and more of- ten if the water is contaminated. Inspect the entering and leav- ing condenser water sensors and flow devices for signs of cor- rosion or scale. Replace the sensor or Schrader fitting if corrod- ed or remove any scale if found.

Higher than normal condenser pressures, together with the inability to reach full refrigeration load, usually indicate dirty tubes or air in the chiller. If the refrigeration log indicates a rise above normal condenser pressures, check the condenser refrig- erant temperature against the leaving condenser water tempera- ture. If this reading is more than what the design difference is supposed to be, the condenser tubes may be dirty or water flow may be incorrect. Because HFC-134a is a high-pressure refrig- erant, air usually does not enter the chiller.

During the tube cleaning process, use brushes specially de- signed to avoid scraping and scratching the tube wall. Contact your Carrier representative to obtain these brushes. Do not use wire brushes.

Hard scale may require chemical treatment for its preven- tion or removal. Consult a water treatment specialist for proper treatment.

Water Leaks — The refrigerant moisture indicator on the refrigerant motor cooling line (Fig. 2) indicates whether there is water leakage during chiller operation. Water leaks should be repaired immediately.

The chiller must be dehydrated after repair of water leaks. See Chiller Dehydration section, page 53.

74

Image 74
Contents Start-Up, Operation, and Maintenance Instructions Safety ConsiderationsContents Contents Introduction Abbreviations and ExplanationsChiller Familiarization 19XR IdentificationTypical 19XR Components Refrigeration Cycle Motor and Lubricating OIL Cooling CycleVFD Cooling Cycle Lubrication CycleStarting Equipment Unit-Mounted Solid-State Starter OptionalDefinitions Unit-Mounted Wye-Delta Starter OptionalControls Variable Frequency Drive VFD 19XR Controls and Sensor Locations Major PIC II Components Panel Locations PIC II Component Panel LocationControl Panel CVC/ICVC Operation and Menus Fig Example of Status Screen 19XR Chiller Display Menu Structure CVC/ICVC 19XR Service Menu Structure Time and Date Example of Time Schedule Operation Screen Example of Set Point Screen Example 1 Chiller Display Default Screen CVC/ICVC Display DataExample 3 Startup Display Screen Example 2 Maintstat Display ScreenDescription Status Units Point Startup Description Status Units PointExample 4 Compress Display Screen Example 5 Heatex Display ScreenExample 6 Power Display Screen Example 7 Ismstat Display ScreenCVC Icvc Description Status Units Point Menu Setpoint Select Description Status Units Point DefaultExample 8 CVC/ICVCPSWD Display Screen Example 9 Setpoint Display ScreenExample 12 Llmaint Display Screen Example 11 Override Display ScreenControl Algorithm Status Override Description Units Point Control Algorithm Status Wsmdefme Description Units Point Example 13 Ismhist Display ScreenExample 14 Wsmdefme Display Screen Example 15 Netopt Display Screen ISM Starter Config DataIsmconf Description Status Units Point Default Example 16 Ismconf Display ScreenExample 17 Options Display Screen Example 18 SETUP1 Display ScreenSpare ALERT/ALARM Enable LAG=2, STANDBY=3 Example 19 SETUP2 Display ScreenExample 20 Leadlag Display Screen Example 21 Rampdem Display Screen Description Status Units Point DefaultReset Type Example 22 Tempctl Display ScreenMode IGV VFD Normal Control mode occurs when Active Delta TSurge Prevention Mode occurs when Active Delta T PIC II System FunctionsPage Protective Safety Limits and Control Settings Page Capacity Overrides Evaporator Freeze Protection Icvc only a Page Surge Protection Fixed Speed Chiller Head Pressure Reference OutputPage Page Point Example of Attach to Network Device Screen Example of Holiday Period Screen Recycle Sequence Fig Default CVC/ICVC screen, press the MenuSTART-UP/SHUTDOWN Local Start-Up Local start-up or a manual start-up isEntering Condenser Water temperature plus 3 F -1.6C Equipment Required Before Initial START-UPJob Data Required 19XR Leak Test Procedures Page Page Temperature Pressure HFC-134a Pressure Temperature FHFC-134a Pressure Temperature C Inspect Wiring Perform dehydration as followsWhite G Check StarterManufacturer Cable no Software Configuration Parameter Benshaw RediStart Micro Menu Items Verify VFD Configuration and Change Parameters if Necessary Description Settings VFD Title Setting ParameterDescription Setting Press Status Press Compress Press Select Press Menu Press Status Press Compress Press SelectEstimated Minimum Load Conditions Load Surge Prevention Occurs TOO Soon Occurs TOO LateCCM Temperature Thermistors Tests to be Devices Tested Performed Charge Refrigerant into ChillerControl Test Menu Functions Initial START-UP Refrigerant HFC-134a ChargeCheck Oil Pressure and Compressor Stop Dry Run to Test Start-Up SequenceCheck Motor Rotation To Start the Chiller Operating InstructionsOperator Duties To Stop the ChillerPumpout and Refrigerant Transfer Procedures Operating the Optional Pumpout UnitBearing Date Cooler Condenser CompressorTime FLATurn off pumpout condenser water Valve ConditionChillers with Isolation Valves General Maintenance Test After Service, Repair, or Major Leak IfWeekly Maintenance Guide Vane Actuator LinkageScheduled Maintenance Check Safety and Operating Controls MonthlyCompressor Bearing and Gear Maintenance Inspect the Heat Exchanger Tubes and Flow DevicesOrdering Replacement Chiller Parts When Optional Pumpout System ControlsTroubleshooting Guide Checking Pressure TransducersOccdefcm HeatexLlmaint ICE Build Terminate Pumpdown ModeShutdown in Progress Ready to StartAutorestart in Progress PrestartAlert Running Temp ControlLimited FaultRUN Capacity SensorStart ProtectiveFailure to StopPotential LossCommunication FREEZE-UPAutorestart Sensor AlertLOW OIL Pressure PendingOption Sensor Pressure AlertRecycle DiffuserThermistor Temperature F vs. Resistance/Voltage Drop DropThermistor Temperature C vs. Resistance/Voltage Drop Temperature PIC ResistancePower is connected to Plug J1 on each module Control ModulesReplacing Defective Processor Modules Chiller Control Module CCM FigIntegrated Starter Module Fig Integratedstartermodule Measure SCR Pairs Recorded Being Between CheckedHeat Exchanger Data English Number of Tubes English CodeHeat Exchanger Data SI Number of Tubes CodeCompressor Weights 19XR Additional Data for Marine Waterboxes19XR Motor Weights Standard and High Efficiency Motors English Motor19XR Waterbox Cover Weights English lb 19XR Waterbox Cover Weights SI kg Motor Voltage Code Additional Miscellaneous WeightsOptional Pumpout System Electrical Data Compressor Assembly Torques Description TorqueView B High Speed Shaft 19XR Compressor Clearances Compressor Code100 Allen-Bradley Wye-Delta Unit-Mounted Starter101 102 ISM103 Temp104 105 106 Power Panel Wiring Schematic 107Cutler-Hammer Wye Delta Unit Mounted Starter Sizes 3-5DP 108Cutler-Hammer Wye Delta Unit Mounted Starter Size 6DP 109Ground Fault Phase Current Option Separate Metering Option111 112 AUX113 FU Fuse114 115 VFDTypical Variable Frequency Drive VFD Wiring Schematic 116117 118 119 120 121 122 Index Index Remove and use for job file JOB Data RequiredInspect Wiring and Record Electrical Data Ratings CL-260.0 40 to 10010 to 15 toCL-4 105 to 115 200 to460 85 to20 to Psi 30 to50 to CL-6125 150 to90 to 125 toAmp 250 CL-8 65 to90 to 100 25 to CL-950 to 145 CL-100000 to 0200 0000 to0200 CL-11028 10 to Job Sheet 60 for 60 Hz and 50 for 50 Hz 002 Power Module Dependent Selected motor 100% amps004 To H.022 Job Sheet 60 for 60 Hz and 50 for 50 Hz 000 100 to Selected line voltageCL-13 CCN Local Reset CL-14Page Incurring obligations
Related manuals
Manual 40 pages 46.08 Kb

19XR, XRV specifications

The Carrier 19XR and 19XRV chillers are sophisticated cooling solutions that represent the forefront of HVAC technology. Designed for large commercial and industrial applications, these chillers provide exceptional performance, energy efficiency, and reliability, making them ideal for a variety of environments ranging from hospitals to manufacturing facilities.

One of the most significant features of the Carrier 19XR and 19XRV chillers is their advanced scroll compressor technology. These units employ a tandem scroll design that enhances efficiency while minimizing operational noise. This makes them ideal for urban environments where noise restrictions may be in place. Moreover, the compressors are equipped with variable speed drive options in the 19XRV model, which allows for greater energy savings by adjusting cooling output based on real-time demand.

In addition to their advanced compressors, the 19XR and 19XRV units incorporate the Carrier GreenChoice refrigerant, which has a lower global warming potential compared to traditional refrigerants. This innovative choice not only meets regulatory requirements but also contributes to sustainability goals, making these chillers a responsible choice for environmentally conscious organizations.

The units are engineered with a robust heat exchanger design, which enhances heat transfer efficiency and overall system performance. This ensures optimal operation even in extreme conditions. They feature a microprocessor-based control system that allows for precise monitoring and control of the chiller’s performance, enabling operators to make real-time adjustments to maximize energy efficiency.

The Carrier 19XR and 19XRV chillers also prioritize serviceability. The design incorporates easy access to key components, simplifying maintenance procedures and reducing downtime. This focus on maintainability extends the lifespan of the equipment, leading to lower lifecycle costs.

In terms of connectivity, these chillers are equipped with advanced Building Management System (BMS) integration capabilities. This allows for seamless monitoring and control of the chillers using a centralized platform, facilitating energy management and operational optimization.

Overall, the Carrier 19XR and 19XRV chillers stand out in the market for their blend of cutting-edge technology, energy efficiency, and user-friendly features. They are engineered to meet the demanding needs of modern commercial and industrial applications, making them a preferred choice for facility managers seeking reliable cooling solutions.