GSM/EDGE Measurement Application

Measurements

b.ORFS standards call for the use of a 5-pole, sync-tuned filter; this and the following footnotes review the instrument's conformance to that standard. Offset frequencies can be measured by using either the FFT method or the direct time method. By default, the FFT method is used for offsets of 400 kHz and below, and the direct time method is used for offsets above 400 kHz. The FFT method is faster, but has lower dynamic range than the direct time method.

c.The direct time method uses digital Gaussian RBW filters whose noise bandwidth (the measure of importance to “spectrum due to modulation”) is within ±0.5% of the noise bandwidth of an ideal 5-pole sync-tuned filter. However, the Gaussian filters do not match the 5-pole standard behavior at offsets of 400 kHz and below, because they have lower leakage of the carrier into the filter. The lower leakage of the Gaussian filters provides a superior measurement because the leakage of the carrier masks the ORFS due to the UUT, so that less masking lets the test be more sensitive to variations in the UUT spec- tral splatter. But this superior measurement gives a result that does not conform with ORFS standards. Therefore, the default method for offsets of 400 kHz and below is the FFT method.

d.The FFT method uses an exact 5-pole sync-tuned RBW filter, implemented in software.

e.EDGE (others) means NSR 16/32QAM and HSR all formats (QPSK/16QAM/32QAM).

f.The dynamic range for offsets at and below 400 kHz is not directly observable because the signal spec- trum obscures the result. These dynamic range specifications are computed from phase noise observa- tions.

g.Offsets of 1.8 MHz and higher use 100 kHz analysis bandwidths.

h.The impulse bandwidth (the measure of importance to “spectrum due to switching transients”) of the filter used in the direct time method is 0.8% less than the impulse bandwidth of an ideal 5-pole sync-tuned filter, with a tolerance of ±0.5%. Unlike the case with spectrum due to modulation, the shape of the filter response (Gaussian vs. sync-tuned) does not affect the results due to carrier leakage, so the

only parameter of the filter that matters to the results is the impulse bandwidth. There is a mean error of 0.07 dB due to the impulse bandwidth of the filter, which is compensated in the measurement of ORFS due to switching. By comparison, an analog RBW filter with a ±10% width tolerance would cause a maximum amplitude uncertainty of 0.9 dB.

Chapter 10

141

Page 141
Image 141
Agilent Technologies N9010A specifications

N9010A specifications

Agilent Technologies, now known as Keysight Technologies, offers a wide range of sophisticated measurement instruments, one of which is the N9010A, a high-performance signal analyzer. The N9010A is a versatile tool designed to meet the needs of engineers and researchers dealing with complex signal generation and analysis.

The N9010A signal analyzer is built on the X-Series signal analysis platform, making it an outstanding choice for various applications, including wireless communication, radar, and electronic warfare. Its main features include an extensive frequency range from 9 kHz to 6 GHz, which provides users with the capability to analyze a diverse array of signals.

One of the defining characteristics of the N9010A is its high dynamic range and sensitivity. The instrument has been engineered to ensure that weak signals can be accurately detected in the presence of strong interfering signals. This quality is crucial for applications such as spectrum monitoring and interference analysis.

Equipped with advanced digital signal processing techniques, the N9010A allows for real-time analysis of complex signals. The analyzer supports various modulation techniques and can perform measurements on frequency, time, and phase to provide a comprehensive view of signal performance. Users can leverage its abilities to analyze a wide range of formats including LTE, Wi-Fi, and many others.

Another significant feature of the N9010A is its flexibility. The instrument includes various software options and measurement applications that can be configured to meet specific testing requirements. This adaptability is essential for engineers who need to stay current with industry developments and evolving technologies.

User-friendliness is also a hallmark of the N9010A. The device features an intuitive interface that simplifies the navigation process, making it easier for users to set up tests and perform analyses with reduced training time.

Additionally, the N9010A can be integrated into a broader test environment, allowing for seamless operation within automated measurement systems. This capability enhances productivity and efficiency in design validation and compliance testing.

In summary, the Agilent Technologies N9010A signal analyzer combines advanced technology, high performance, and user-friendly features. Its ability to handle a wide range of applications makes it an essential tool in the toolbox of modern engineers and researchers working in signal analysis, making it a valuable investment in the pursuit of technological advancements.