Appendix A System Architecture

MainApp

The Logger can control what log messages are generated by each application by controlling the logging severity for different logging zones. You would only access the individual-zone-control of the logger service at the request and supervision of a TAC engineer or developer. For troubleshooting purposes, TAC might request that you turn on debug logging.

AuthenticationApp

This section describes the AuthenticationApp, and contains the following topics:

Understanding the AuthenticationApp, page A-20

Authenticating Users, page A-20

Configuring Authentication on the Sensor, page A-20

Managing TLS and SSH Trust Relationships, page A-21

Understanding the AuthenticationApp

The AuthenticationApp has the following responsibilities:

To authenticate the identity of a user

To administer the accounts, privileges, keys, and certificates of the user

To configure which authentication methods are used by the AuthenticationApp and other access services on the sensor

Authenticating Users

You must configure authentication on the sensor to establish appropriate security for user access. When you install a sensor, an initial cisco account with an expired password is created. A user with administrative access to the sensor accesses the sensor through the CLI or an IPS manager, such as the IDM or the ASDM, by logging in to the sensor using the default administrative account (cisco). In the CLI, the administrator is prompted to change the password. IPS managers initiate a setEnableAuthenticationTokenStatus control transaction to change the password of an account.

Through the CLI or an IPS manager, the administrator configures which authentication method is used, such as username and password or an SSH authorized key. The application servicing the administrator initiates a setAuthenticationConfig control transaction to establish the authentication configuration.

The authentication configuration includes a login attempt limit value that is used to specify how account locking is handled. Account locking is invoked when the number of consecutive failed login attempts for a given account exceeds the login attempt limit value. After an account is locked, all further attempts to log in to that account are rejected. The account is unlocked by resetting the authentication token of the account using the setEnableAuthenticationTokenStatus control transaction. The account locking feature is disabled when the login attempt limit value is set to zero.

The administrator can add additional user accounts either through the CLI or an IPS manager.

Configuring Authentication on the Sensor

When a user tries to access the sensor through a service such as web server or the CLI, the identity of the user must be authenticated and the privileges of the user must be established. The service that is providing access to the user initiates an execAuthenticateUser control transaction request to the

 

Cisco Intrusion Prevention System Sensor CLI Configuration Guide for IPS 7.2

A-20

OL-29168-01

Page 594
Image 594
Cisco Systems IPS4510K9 manual Understanding the AuthenticationApp, Authenticating Users

IPS4510K9 specifications

Cisco Systems has long been a leading player in network security, and its IPS (Intrusion Prevention System) series is a testament to its commitment to safeguarding digital environments. Among its notable offerings are the IPS4510K9 and IPS4520K9 models, both designed to provide advanced threat protection for mid-sized to large enterprise networks.

The Cisco IPS4510K9 and IPS4520K9 are distinguished by their cutting-edge features that help organizations defend against a myriad of cyber threats. These systems utilize a multi-layered approach to security, integrating intrusion prevention, advanced malware protection, and comprehensive visibility across the network.

One of the primary characteristics of the IPS4510K9 is its high performance. It boasts a throughput of up to 1 Gbps, making it suitable for environments that demand rapid data processing and real-time responses to threats. The IPS4520K9, on the other hand, enhances that capability with improved throughput of up to 2 Gbps, accommodating larger enterprises with heavier network traffic. These models are equipped with powerful processors that support complex signature matching and can intelligently distinguish between legitimate traffic and potential threats.

In addition to performance, both models are designed with scalability in mind. They can be easily integrated into existing Cisco infrastructures. This facilitates a seamless enhancement of security without causing significant interruptions to ongoing operations. Moreover, they offer flexible deployment options, allowing organizations to operate them inline or out of band depending on their specific needs.

The Cisco IPS4510K9 and IPS4520K9 leverage advanced detection technologies, utilizing a variety of signature types and heuristic analysis to detect known and unknown threats effectively. They are equipped with real-time alerting and reporting capabilities, giving security teams immediate visibility into potential breaches and enabling them to respond swiftly.

Furthermore, both models support a range of management options through the Cisco Security Manager, allowing for centralized administration, streamlined policy management, and enhanced monitoring capabilities. Automated updates ensure the systems remain current with the latest threat intelligence, vital for staying ahead of evolving cyber threats.

In summary, the Cisco Systems IPS4510K9 and IPS4520K9 represent powerful solutions for organizations seeking robust intrusion prevention capabilities. With their high performance, scalability, and advanced detection technologies, these systems are essential tools in the ever-changing landscape of cybersecurity, providing enterprises with the peace of mind needed to operate securely in today's digital world.