Appendix A System Architecture

Communications

IDCONF

The Cisco IPS manages its configuration using XML documents. IDCONF specifies the XML schema including the Cisco IPS control transactions. The IDCONF schema does not specify the contents of the configuration documents, but rather the framework and building blocks from which the configuration documents are developed. It provides mechanisms that let the IPS managers and CLI ignore features that are not configurable by certain platforms or functions through the use of the feature-supported attribute.

IDCONF messages are wrapped inside IDIOM request and response messages.

The following is an IDCONF example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<request xmlns="http://www.cisco.com/cids/idiom" schemaVersion="2.00"> <editConfigDelta xmlns="http://www.cisco.com/cids/idconf">

<component name="userAccount">

<config typedefsVersion="2004-03-01" xmlns="http://www.cisco.com/cids/idconf"> <struct>

<map name="user-accounts“ editOp=“merge”> <mapEntry>

<key>

<var name="name">cisco</var> </key>

<struct>

<struct name="credentials">

<var name="role">administrator</var> </struct>

</struct>

</mapEntry>

</map>

</struct>

</config>

</component>

</editDefaultConfig>

</request>

SDEE

The Cisco IPS produces various types of events including intrusion alerts and status events. The IPS communicates events to clients such as management applications using the proprietary IPS-industry leading protocol, SDEE, which is a product-independent standard for communicating security device events. SDEE adds extensibility features that are needed for communicating events generated by various types of security devices.

Systems that use SDEE to communicate events to clients are referred to as SDEE providers. SDEE specifies that events can be transported using the HTTP or HTTP over SSL and TLS protocols. When HTTP or HTTPS is used, SDEE providers act as HTTP servers, while SDEE clients are the initiators of HTTP requests.

The IPS includes the web server, which processes HTTP or HTTPS requests. The web server uses run-time loadable servlets to process the different types of HTTP requests. Each servlet handles HTTP requests that are directed to the URL associated with the servlet. The SDEE server is implemented as a web server servlet.

The SDEE server only processes authorized requests. A request is authorized if is originates from a web server to authenticate the identity of the client and determine the privilege level of the client.

 

 

Cisco Intrusion Prevention System Sensor CLI Configuration Guide for IPS 7.2

 

 

 

 

 

 

 

OL-29168-01

 

 

A-33

 

 

 

 

 

Page 607
Image 607
Cisco Systems IPS4510K9 manual Idconf

IPS4510K9 specifications

Cisco Systems has long been a leading player in network security, and its IPS (Intrusion Prevention System) series is a testament to its commitment to safeguarding digital environments. Among its notable offerings are the IPS4510K9 and IPS4520K9 models, both designed to provide advanced threat protection for mid-sized to large enterprise networks.

The Cisco IPS4510K9 and IPS4520K9 are distinguished by their cutting-edge features that help organizations defend against a myriad of cyber threats. These systems utilize a multi-layered approach to security, integrating intrusion prevention, advanced malware protection, and comprehensive visibility across the network.

One of the primary characteristics of the IPS4510K9 is its high performance. It boasts a throughput of up to 1 Gbps, making it suitable for environments that demand rapid data processing and real-time responses to threats. The IPS4520K9, on the other hand, enhances that capability with improved throughput of up to 2 Gbps, accommodating larger enterprises with heavier network traffic. These models are equipped with powerful processors that support complex signature matching and can intelligently distinguish between legitimate traffic and potential threats.

In addition to performance, both models are designed with scalability in mind. They can be easily integrated into existing Cisco infrastructures. This facilitates a seamless enhancement of security without causing significant interruptions to ongoing operations. Moreover, they offer flexible deployment options, allowing organizations to operate them inline or out of band depending on their specific needs.

The Cisco IPS4510K9 and IPS4520K9 leverage advanced detection technologies, utilizing a variety of signature types and heuristic analysis to detect known and unknown threats effectively. They are equipped with real-time alerting and reporting capabilities, giving security teams immediate visibility into potential breaches and enabling them to respond swiftly.

Furthermore, both models support a range of management options through the Cisco Security Manager, allowing for centralized administration, streamlined policy management, and enhanced monitoring capabilities. Automated updates ensure the systems remain current with the latest threat intelligence, vital for staying ahead of evolving cyber threats.

In summary, the Cisco Systems IPS4510K9 and IPS4520K9 represent powerful solutions for organizations seeking robust intrusion prevention capabilities. With their high performance, scalability, and advanced detection technologies, these systems are essential tools in the ever-changing landscape of cybersecurity, providing enterprises with the peace of mind needed to operate securely in today's digital world.