Chapter 14 Configuring Attack Response Controller for Blocking and Rate Limiting

Configuring Blocking and Rate Limiting Devices

direction: in

-----------------------------------------------

pre-acl-name: <defaulted>

post-acl-name: <defaulted>

-----------------------------------------------

-----------------------------------------------

response-capabilities: blockrate-limit default: block

-----------------------------------------------

sensor(config-net-rou)#

Step 12 Exit network access submode.

sensor(config-net-rou)# exit

sensor(config-net)# exit sensor(config)# exit Apply Changes:?[yes]:

Step 13 Press Enter to apply the changes or enter no to discard them.

For More Information

For the procedure for configuring user profiles, see Configuring User Profiles, page 14-20.

For the procedure for adding a device to the known hosts list, see Adding Hosts to the SSH Known Hosts List, page 3-46.

Configuring the Sensor to Manage Catalyst 6500 Series Switches and Cisco 7600 Series Routers

This section describes how to configure the sensor to manage Cisco switches. It contains the following topics:

Switches and VACLs, page 14-25

Configuring the Sensor to Manage Catalyst 6500 Series Switches and Cisco 7600 Series Routers, page 14-26

Switches and VACLs

You can configure the ARC to block using VACLs on the switch itself when running Cisco Catalyst software, or to block using router ACLs on the MSFC or on the switch itself when running Cisco IOS software. This section describes blocking using VACLs. You cannot configure switches that use VACLs to perform rate limiting. You must configure the blocking interfaces on the Catalyst 6500 series switch and specify the VLAN of traffic you want blocked.

You create and save Pre-Block and Post-Block VACLs in your switch configuration. These VACLs must be extended IP VACLs, either named or numbered. See your switch documentation for more information on creating VACLs. Enter the names of these VACLs that are already configured on your switch in the Pre-Block VACL and Post-Block VACL fields.

The Pre-Block VACL is used mainly for permitting what you do not want the sensor to ever block. When a packet is checked against the VACL, the first line that gets matched determines the action. If the first line matched is a permit line from the Pre-Block VACL, the packet is permitted even though there may be a deny line (from an automatic block) listed later in the VACL. The Pre-Block VACL can override the deny lines resulting from the blocks.

 

 

Cisco Intrusion Prevention System Sensor CLI Configuration Guide for IPS 7.2

 

 

 

 

 

 

OL-29168-01

 

 

14-25

 

 

 

 

 

Page 399
Image 399
Cisco Systems IPS4510K9 manual Switches and VACLs, 14-25

IPS4510K9 specifications

Cisco Systems has long been a leading player in network security, and its IPS (Intrusion Prevention System) series is a testament to its commitment to safeguarding digital environments. Among its notable offerings are the IPS4510K9 and IPS4520K9 models, both designed to provide advanced threat protection for mid-sized to large enterprise networks.

The Cisco IPS4510K9 and IPS4520K9 are distinguished by their cutting-edge features that help organizations defend against a myriad of cyber threats. These systems utilize a multi-layered approach to security, integrating intrusion prevention, advanced malware protection, and comprehensive visibility across the network.

One of the primary characteristics of the IPS4510K9 is its high performance. It boasts a throughput of up to 1 Gbps, making it suitable for environments that demand rapid data processing and real-time responses to threats. The IPS4520K9, on the other hand, enhances that capability with improved throughput of up to 2 Gbps, accommodating larger enterprises with heavier network traffic. These models are equipped with powerful processors that support complex signature matching and can intelligently distinguish between legitimate traffic and potential threats.

In addition to performance, both models are designed with scalability in mind. They can be easily integrated into existing Cisco infrastructures. This facilitates a seamless enhancement of security without causing significant interruptions to ongoing operations. Moreover, they offer flexible deployment options, allowing organizations to operate them inline or out of band depending on their specific needs.

The Cisco IPS4510K9 and IPS4520K9 leverage advanced detection technologies, utilizing a variety of signature types and heuristic analysis to detect known and unknown threats effectively. They are equipped with real-time alerting and reporting capabilities, giving security teams immediate visibility into potential breaches and enabling them to respond swiftly.

Furthermore, both models support a range of management options through the Cisco Security Manager, allowing for centralized administration, streamlined policy management, and enhanced monitoring capabilities. Automated updates ensure the systems remain current with the latest threat intelligence, vital for staying ahead of evolving cyber threats.

In summary, the Cisco Systems IPS4510K9 and IPS4520K9 represent powerful solutions for organizations seeking robust intrusion prevention capabilities. With their high performance, scalability, and advanced detection technologies, these systems are essential tools in the ever-changing landscape of cybersecurity, providing enterprises with the peace of mind needed to operate securely in today's digital world.