Chapter 9 Configuring Anomaly Detection

Understanding Security Policies

connections, that is, as scanners, and sends alerts for all traffic flows. Using asymmetric mode protection with anomaly detection enabled causes excessive resource usage and possible false positives for anomaly detection signatures.

Understanding Security Policies

You can create multiple security policies and apply them to individual virtual sensors. A security policy is made up of a signature definition policy, an event action rules policy, and an anomaly detection policy. Cisco IPS contains a default signature definition policy called sig0, a default event action rules policy called rules0, and a default anomaly detection policy called ad0. You can assign the default policies to a virtual sensor or you can create new policies. The use of multiple security policies lets you create security policies based on different requirements and then apply these customized policies per VLAN or physical interface.

Understanding Anomaly Detection

The anomaly detection component of the sensor detects worm-infected hosts. This enables the sensor to be less dependent on signature updates for protection again worms and scanners, such as Code Red and SQL Slammer and so forth. The anomaly detection component lets the sensor learn normal activity and send alerts or take dynamic response actions for behavior that deviates from what it has learned as normal behavior.

Note Anomaly detection does not detect email-based worms, such as Nimda.

Anomaly detection detects the following two situations:

When the network starts on the path of becoming congested by worm traffic.

When a single worm-infected source enters the network and starts scanning for other vulnerable hosts.

Understanding Worms

Caution Anomaly detection assumes it gets traffic from both directions. If the sensor is configured to see only one direction of traffic, you should turn off anomaly detection. Otherwise, when anomaly detection is running in an asymmetric environment, it identifies all traffic as having incomplete connections, that is, as scanners, and sends alerts for all traffic flows. Using asymmetric mode protection with anomaly detection enabled causes excessive resource usage and possible false positives for anomaly detection signatures.

Worms are automated, self-propagating, intrusion agents that make copies of themselves and then facilitate their spread. Worms attack a vulnerable host, infect it, and then use it as a base to attack other vulnerable hosts. They search for other hosts by using a form of network inspection, typically a scan, and then propagate to the next target. A scanning worm locates vulnerable hosts by generating a list of IP addresses to probe, and then contacts the hosts. Code Red worm, Sasser worm, Blaster worm, and the Slammer worm are examples of worms that spread in this manner.

Cisco Intrusion Prevention System Sensor CLI Configuration Guide for IPS 7.2

9-2

OL-29168-01

 

 

Page 286
Image 286
Cisco Systems IPS4510K9 manual Understanding Anomaly Detection, Understanding Worms

IPS4510K9 specifications

Cisco Systems has long been a leading player in network security, and its IPS (Intrusion Prevention System) series is a testament to its commitment to safeguarding digital environments. Among its notable offerings are the IPS4510K9 and IPS4520K9 models, both designed to provide advanced threat protection for mid-sized to large enterprise networks.

The Cisco IPS4510K9 and IPS4520K9 are distinguished by their cutting-edge features that help organizations defend against a myriad of cyber threats. These systems utilize a multi-layered approach to security, integrating intrusion prevention, advanced malware protection, and comprehensive visibility across the network.

One of the primary characteristics of the IPS4510K9 is its high performance. It boasts a throughput of up to 1 Gbps, making it suitable for environments that demand rapid data processing and real-time responses to threats. The IPS4520K9, on the other hand, enhances that capability with improved throughput of up to 2 Gbps, accommodating larger enterprises with heavier network traffic. These models are equipped with powerful processors that support complex signature matching and can intelligently distinguish between legitimate traffic and potential threats.

In addition to performance, both models are designed with scalability in mind. They can be easily integrated into existing Cisco infrastructures. This facilitates a seamless enhancement of security without causing significant interruptions to ongoing operations. Moreover, they offer flexible deployment options, allowing organizations to operate them inline or out of band depending on their specific needs.

The Cisco IPS4510K9 and IPS4520K9 leverage advanced detection technologies, utilizing a variety of signature types and heuristic analysis to detect known and unknown threats effectively. They are equipped with real-time alerting and reporting capabilities, giving security teams immediate visibility into potential breaches and enabling them to respond swiftly.

Furthermore, both models support a range of management options through the Cisco Security Manager, allowing for centralized administration, streamlined policy management, and enhanced monitoring capabilities. Automated updates ensure the systems remain current with the latest threat intelligence, vital for staying ahead of evolving cyber threats.

In summary, the Cisco Systems IPS4510K9 and IPS4520K9 represent powerful solutions for organizations seeking robust intrusion prevention capabilities. With their high performance, scalability, and advanced detection technologies, these systems are essential tools in the ever-changing landscape of cybersecurity, providing enterprises with the peace of mind needed to operate securely in today's digital world.