Appendix A System Architecture

Cisco IPS File Structure

CIDEE

CIDEE specifies the extensions to SDEE that are used by the Cisco IPS. The CIDEE standard specifies all possible extensions that are supported by the Cisco IPS. Specific systems may implement a subset of CIDEE extensions. However, any extension that is designated as being required MUST be supported by all systems. CIDEE specifies the Cisco IPS-specific security device events and the IPS extensions to the SDEE evIdsAlert element.

CIDEE supports the following events:

evError—Error event

Generated by the CIDEE provider when the provider detects an error or warning condition. The evError event contains error code and textual description of the error.

evStatus—Status message event

Generated by CIDEE providers to indicate that something of potential interest occurred on the host. Different types of status messages can be reported in the status event—one message per event. Each type of status message contains a set of data elements that are specific to the type of occurrence that the status message is describing. The information in many of the status messages are useful for audit purposes. Errors and warnings are not considered status information and are reported using evError rather than evStatus.

evShunRqst—Block request event

Generated to indicate that a block action is to be initiated by the service that handles network blocking.

The following is a CDIEE extended event example:

<sd:events xmlns:cid="http://www.cisco.com/cids/2004/04/cidee" xmlns:sd=“http://example.org/2003/08/sdee”>

<sd:evIdsAlert eventId="1042648730045587005" vendor="Cisco“ severity="medium"> <sd:originator>

<sd:hostId>Beta4Sensor1</sd:hostId>

<cid:appName>sensorApp</cid:appName>

<cid:appInstanceId>8971</cid:appInstanceId>

</sd:originator>

<sd:time offset="0" timeZone="UTC">1043238671706378000</sd:time> <sd:signature description="IOS Udp Bomb" id="4600" cid:version="S37">

<cid:subsigId>0</cid:subsigId> </sd:signature> …

Cisco IPS File Structure

The Cisco IPS has the following directory structure:

/usr/cids/idsRoot—Main installation directory.

/usr/cids/idsRoot/shared—Stores files used during system recovery.

/usr/cids/idsRoot/var—Stores files created dynamically while the sensor is running.

/usr/cids/idsRoot/var/updates—Stores files and logs for update installations.

/usr/cids/idsRoot/var/virtualSensor—Stores files used by SensorApp to analyze regular expressions.

/usr/cids/idsRoot/var/eventStore—Contains the Event Store application.

/usr/cids/idsRoot/var/core—Stores core files that are created during system crashes.

/usr/cids/idsRoot/var/iplogs—Stores IP log file data.

 

Cisco Intrusion Prevention System Sensor CLI Configuration Guide for IPS 7.2

A-34

OL-29168-01

Page 608
Image 608
Cisco Systems IPS4510K9 manual Cisco IPS File Structure, Cidee

IPS4510K9 specifications

Cisco Systems has long been a leading player in network security, and its IPS (Intrusion Prevention System) series is a testament to its commitment to safeguarding digital environments. Among its notable offerings are the IPS4510K9 and IPS4520K9 models, both designed to provide advanced threat protection for mid-sized to large enterprise networks.

The Cisco IPS4510K9 and IPS4520K9 are distinguished by their cutting-edge features that help organizations defend against a myriad of cyber threats. These systems utilize a multi-layered approach to security, integrating intrusion prevention, advanced malware protection, and comprehensive visibility across the network.

One of the primary characteristics of the IPS4510K9 is its high performance. It boasts a throughput of up to 1 Gbps, making it suitable for environments that demand rapid data processing and real-time responses to threats. The IPS4520K9, on the other hand, enhances that capability with improved throughput of up to 2 Gbps, accommodating larger enterprises with heavier network traffic. These models are equipped with powerful processors that support complex signature matching and can intelligently distinguish between legitimate traffic and potential threats.

In addition to performance, both models are designed with scalability in mind. They can be easily integrated into existing Cisco infrastructures. This facilitates a seamless enhancement of security without causing significant interruptions to ongoing operations. Moreover, they offer flexible deployment options, allowing organizations to operate them inline or out of band depending on their specific needs.

The Cisco IPS4510K9 and IPS4520K9 leverage advanced detection technologies, utilizing a variety of signature types and heuristic analysis to detect known and unknown threats effectively. They are equipped with real-time alerting and reporting capabilities, giving security teams immediate visibility into potential breaches and enabling them to respond swiftly.

Furthermore, both models support a range of management options through the Cisco Security Manager, allowing for centralized administration, streamlined policy management, and enhanced monitoring capabilities. Automated updates ensure the systems remain current with the latest threat intelligence, vital for staying ahead of evolving cyber threats.

In summary, the Cisco Systems IPS4510K9 and IPS4520K9 represent powerful solutions for organizations seeking robust intrusion prevention capabilities. With their high performance, scalability, and advanced detection technologies, these systems are essential tools in the ever-changing landscape of cybersecurity, providing enterprises with the peace of mind needed to operate securely in today's digital world.