Appendix A System Architecture

CollaborationApp

Set of rules score weight values

Set of IP addresses and address ranges, which together with the rules and alerts provide the information needed to calculate reputation scores

List of IP addresses and address ranges for which traffic should always be denied

Network participation configuration, which allows the server to control the rate at which sensors send telemetry date to the server

The sensor sends collaboration information to the Network Participation server. The sensor queries the Global Correlation server for a list of what collaboration updates are available and from which Global Correlation server to download the update files.

Note The SensorApp starts before the CollaborationApp, but they initialize asynchronously. Therefore, it is possible that the Reputation Update server may download and attempt to apply one or more global correlation updates before the SensorApp is ready to accept the update. The update server may download and partially process the update, but it must wait until the SensorApp is ready before it can commit the update.

For More Information

For detailed information on global correlation and how to configure it, see Chapter 10, “Configuring Global Correlation.”

Update Components

The Global Correlation Update client exchanges manifests with the Global Correlation Update server. It parses the server manifest to determine what new updates are available for download and where they reside, and then builds a list of updates to be installed. If all updates are applied successfully, then the Global Correlation Update client commits the applied updates for each component, notifies SensorApp that new updates are available, and updates the client manifest to reflect the latest committed updates for each component.

The client manifest contains the UDI of the sensor, which includes the serial number of the sensor, and an encrypted shared secret that the server uses to verify the sensor is an authentic Cisco IPS sensor. The server manifest contains a list of update files available for each component. For each update file in the list, the server manifest contains data, such as the update version, type, order, location, file transfer protocol, and so forth.

There are two types of updates files: a full update file that replaces any existing data in the database of the component, and an incremental update that modifies the existing reputation data by adding, deleting, or replacing information. When all update files have been applied for all components, the temporary databases are committed by replacing the working databases.

Authentication and authorization are achieved though the secret encryption mechanism and decryption key management. The Global Correlation Update server authenticates the sensor using the shared secret encryption mechanism contained in the client manifest. The Global Correlation Update client authorizes sensors using decryption key management. Sensors that have been authenticated by the Global Correlation Update server are sent valid keys in the server manifest so that they can decrypt the update files.

 

Cisco Intrusion Prevention System Sensor CLI Configuration Guide for IPS 7.2

A-28

OL-29168-01

Page 602
Image 602
Cisco Systems IPS4510K9 manual Update Components, For More Information

IPS4510K9 specifications

Cisco Systems has long been a leading player in network security, and its IPS (Intrusion Prevention System) series is a testament to its commitment to safeguarding digital environments. Among its notable offerings are the IPS4510K9 and IPS4520K9 models, both designed to provide advanced threat protection for mid-sized to large enterprise networks.

The Cisco IPS4510K9 and IPS4520K9 are distinguished by their cutting-edge features that help organizations defend against a myriad of cyber threats. These systems utilize a multi-layered approach to security, integrating intrusion prevention, advanced malware protection, and comprehensive visibility across the network.

One of the primary characteristics of the IPS4510K9 is its high performance. It boasts a throughput of up to 1 Gbps, making it suitable for environments that demand rapid data processing and real-time responses to threats. The IPS4520K9, on the other hand, enhances that capability with improved throughput of up to 2 Gbps, accommodating larger enterprises with heavier network traffic. These models are equipped with powerful processors that support complex signature matching and can intelligently distinguish between legitimate traffic and potential threats.

In addition to performance, both models are designed with scalability in mind. They can be easily integrated into existing Cisco infrastructures. This facilitates a seamless enhancement of security without causing significant interruptions to ongoing operations. Moreover, they offer flexible deployment options, allowing organizations to operate them inline or out of band depending on their specific needs.

The Cisco IPS4510K9 and IPS4520K9 leverage advanced detection technologies, utilizing a variety of signature types and heuristic analysis to detect known and unknown threats effectively. They are equipped with real-time alerting and reporting capabilities, giving security teams immediate visibility into potential breaches and enabling them to respond swiftly.

Furthermore, both models support a range of management options through the Cisco Security Manager, allowing for centralized administration, streamlined policy management, and enhanced monitoring capabilities. Automated updates ensure the systems remain current with the latest threat intelligence, vital for staying ahead of evolving cyber threats.

In summary, the Cisco Systems IPS4510K9 and IPS4520K9 represent powerful solutions for organizations seeking robust intrusion prevention capabilities. With their high performance, scalability, and advanced detection technologies, these systems are essential tools in the ever-changing landscape of cybersecurity, providing enterprises with the peace of mind needed to operate securely in today's digital world.