Administering Indications and Instances Using HP SMH

Viewing Indications

Searching WBEM Events Using the CLI

To search WBEM events using the CLI, enter the following command at the HP-UX prompt:

#evweb eventviewer -L

Where:

-L

is an option used to list all the WBEM event.

A list of WBEM events is displayed on the screen.

You can also use the following switches with the -Loption:

-e [eq\ne\le\ge\bw] [:] <severity level1>[,<severity level2>]

-v <comma separated event category names>

-i <comma separated EventID>

-r[is\be\en\co][:](<string to be searched>)

-a(<number for age>(:)(yy\mm\dd\hh)

-t[eq\le\ge\bw] (<mm:dd:yyyy:hh:mi:ss>)[,<mm:dd:yyyy:hh:mi:ss>]

-s[asc\desc] (<summary list column name>)

-o(<offset number>) -c(<count of events>)

For information on searching WBEM events, using the CLI, see evweb_eventviewer (1).

Viewing Summary Information About WBEM Events

You can view summary information about events stored in the Event Archive database.

Viewing Summary Information Using the GUI

To view summary information about WBEM events, complete the following steps:

Step 1. Log on to the System Management Homepage.

To log in to HP SMH, enter http://<hostname>: 2301 in the address bar of a Web browser. The HP SMH login screen is displayed.

Chapter 4

95

Page 95
Image 95
HP UX System Fault Management (SFM) Software manual Viewing Summary Information About Wbem Events, # evweb eventviewer -L

UX System Fault Management (SFM) Software specifications

HP UX System Fault Management (SFM) Software is a robust tool designed to enhance the stability and reliability of HP-UX systems. This software plays a critical role in fault detection, diagnosis, and recovery, significantly contributing to the overall health of the operating environment.

One of the primary features of HP UX SFM is its ability to monitor system health in real time. By performing continuous diagnostics, SFM can detect potential issues before they escalate into critical failures. This proactive approach allows system administrators to address faults promptly, ensuring minimal downtime and maintaining service availability.

Another important aspect of HP UX SFM is its comprehensive reporting capabilities. The software generates detailed logs and reports on system activities, errors, and recovery actions. This information is vital for administrators who need to analyze system performance, identify recurring issues, and implement solutions that enhance system reliability.

SFM utilizes advanced technologies such as predictive analytics and machine learning algorithms. These technologies enable the software to analyze historical data, identify patterns, and predict potential failures. By leveraging these insights, organizations can take preventive measures, reducing the risk of unexpected outages.

The fault management architecture of HP UX SFM is designed to integrate seamlessly with other system management tools. This interoperability ensures that SFM can coexist in a multi-vendor environment, allowing administrators to implement a holistic approach to system management. Additionally, SFM supports various hardware components and can effectively manage complex configurations involving diverse systems.

Another notable characteristic of HP UX SFM is its user-friendly interface, which simplifies monitoring and management tasks for administrators. The interface is designed for ease of use, enabling quick access to critical information and streamlined workflows for diagnosing and resolving system faults.

Moreover, HP UX SFM enhances overall system resilience through its automated recovery capabilities. In the event of a fault detection, the software can initiate predefined recovery actions, which may include isolating faulty components or rebooting affected services. This automation significantly reduces manual intervention, allowing IT teams to focus on strategic initiatives rather than routine maintenance tasks.

In summary, HP UX System Fault Management Software is an integral part of managing HP-UX systems. Its real-time monitoring, advanced reporting, predictive analytics, and automated recovery features work together to improve system reliability and performance. By adopting SFM, organizations can ensure a more resilient IT infrastructure, resulting in better operational continuity and enhanced productivity.