Honeywell W7750A specifications Broadcasting the Service Message, W7750 Controller Status LED

Page 50

EXCEL 10 W7750A,B,C CONSTANT VOLUME AHU CONTROLLER

Table 12. Excel 10 Alarms. (Continued)

 

 

 

 

Alarm type

 

Name of alarm or error bit

number

Meaning of alarm code or error bit

 

 

 

LOSS_OF_AIR_FLOW

6

The Fan Status DI indicates that there is no air flow when the node is

 

 

commanding the fan to run. The control is shut down and disabled until power is

 

 

cycled or the node is reset. See NOTE below. The alarm is not issued until

 

 

FanFailTime seconds have elapsed since the loss-of-flow condition was first

 

 

reported

 

 

 

DIRTY_FILTER

7

The pressure drop across the filter exceeds the limit and the filter requires

 

 

maintenance. The control runs normally.

 

 

 

SMOKE_ALARM

8

The smoke detector has detected smoke and the node has entered an

 

 

emergency state.

 

 

 

IAQ_OVERRIDE

9

The indoor air quality sensor has detected that the indoor air quality is less than

 

 

the desired standard and additional outdoor air is being brought into the

 

 

conditioned space.

 

 

 

LOW_LIM_ECON_CLOSE

10

The economizer has to close beyond the minimum position to prevent the

 

 

discharge air temperature from going below the discharge temperature low limit.

 

 

 

NOTE: The node can be reset by switching the node to MANUAL and then to the normal operating mode (see Fan Operation in Appendix B).

Also, the Excel 10 variables, AlarmLogX where X is 1 through 5, that store the last five alarms to occur in the controller, are available. These points can be viewed through XBS or E-Vision.

Certain alarm conditions are suppressed conditionally as follows:

Broadcasting the Service Message

The Service Message allows a device on the LONWORKS Bus to be positively identified. The Service Message contains the controller ID number and, therefore, can be used to confirm the physical location of a particular Excel 10 in a building.

There are three methods of broadcasting the Service Message from an Excel 10 W7750 Controller. One uses a hardware service pin button on the side of the controller (see Fig. 41). The second uses the wall module pushbutton (see Fig. 43 and 44). By pressing the wall module pushbutton for more than four seconds, the controller sends out the Service Message. The third involves using the PC Configuration tool, as follows.

When an Assign ID command is issued from the commissioning tool, the node goes into the SERVICE_MESSAGE mode for five minutes. In the SERVICE_MESSAGE mode, pressing the Occupancy Override button on the remote wall module (refer to Fig. 43 and 44 for override button location) causes the Service Message to be broadcast on the network. All other functions are normal in the SERVICE_MESSAGE mode. Even if an Excel 10 W7750 Controller does not have an Override button connected, it can broadcast the Service Message on the network by temporarily shorting the Controller Bypass Input terminal to the Sensor Ground terminal on the W7750A,B,C (short terminals 3 and 5).

The commissioning tool is used to perform the ID Assignment task (see the E-Vision User’s Guide, form 74-2588).

SERVICE

PIN

BUTTON

M10094

Fig. 41. Location of the Service Pin Button.

W7750 Controller Status LED

The LED on the front and center of a W7750 Controller provides a visual indication of the status of the device. See Fig. 42. When the W7750 receives power, the LED should appear in one of the following allowable states:

1.Off— no power to the processor.

2.Continuously On— processor is in initialized state.

3.Slow Blink— controlling, normal state.

4.Fast Blink— when the Excel 10 has an alarm condition.

74-2958— 1

50

Image 50
Contents Excel 72-2958 General Considerations W7750 ControllersAppendices List of Figures 74-2958Setpoint ramping parameters with ramp rate calculation 74-2958List of Tables Description of Devices Typical system overviewControl Application Control ProvidedApplicable Literature Products CoveredOrganization of Manual Form No TitleProduct Names Agency ListingsAbbreviations and Definitions Construction ControllersW7750A DI-1Special Note for the W7750B,C Unit Performance SpecificationsPower Memory Capacity Specified Space Temperature Sensing RangeCPU Excel 10 W7750C Constant Volume AHU Controller Jack DIN rail adapters Lonmark Functional ProfileInputs/Outputs Analog InputsDigital Outputs Digital InputsTriac Outputs on the W7750B,C Models only T7770A1006 Wall ModulesDuct Sensor T7770CT7560A,B construction in in. mm Configurations GeneralConfiguration Options Summary For W7750A,B,C Controllers Heat Pump Control Allowable Heating and Cooling Equipment ConfigurationsStaged HEATING/COOLING Control Modulating HEATING/COOLING ControlEconomizer Control Pneumatic Actuator ControlWall Module Options Occupancy SensorWindow Open/Closed Digital Input MIXED-OUTPUT-TYPE ControlIndoor Air Quality IAQ Override Modes of OperationDirty Filter Monitor Smoke ControlNot OFF ModeDisabled AssignedDetermine Other Bus Devices Required OverviewPlan the System Step No DescriptionLay Out Communications and Power Wiring Lonworks Bus LayoutExcel VAV Cvahu DeviceVA Information Obtained from Power WiringPower Budget Calculation Example ML7984B PWM Valve Actuator VA Ratings For Transformer Sizing Device DescriptionML6161A/B Damper Actuator, 35 lb-in R8242A Contactor Line LossPower wiring details for one Excel 10 per Transformer Nema class 2 transformer voltage output limitsPrepare Wiring Diagrams General ConsiderationsW7750 Controllers Factory Default Digital Outputs Terminal Terminal Number DescriptionConstant Volume AHU Controller ML6161 Floating Actuator COM CCW Load Controller Power Heat Wall Economizer Damper PWM Actuator Power Signal W7750C Constant Lonworks Bus Termination Module Pneumatic transducer to W7750B,C Shown, see triangle noteBrown Orange Lonworks Bus termination wiring options Order EquipmentSensor with Bypass/LED and Lonworks Jack T7770 and T7560 Wall ModulesHoneywell Logo T7770D1018 Echelon Based Components and Parts Accessories SensorsAccessories Troubleshooting Excel 10 Controllers and Wall Modules Configure ControllersTroubleshooting CablingResistance Value ohms AlarmsExcel 10 Alarms Broadcasting the Service Message W7750 Controller Status LEDT7770C,D Wall Module Bypass Pushbutton and Override LED Appendix A. Using E-Vision to Commission a W7750 ControllerSetting the Pid Parameters Sensor CalibrationAppendix B. Sequences of Operation Common Operations Economizer Room Temperature Sensor RmTempHeating IAQ OptionSetpoint Limits LoSetptLim and HiSetptLim Bypass Mode StatusOvrd and StatusLedRemote Setpoint RmtStptPot BypassTimeNot Assigned Continuous Unoccupied ModeOccupancy Mode and Manual Override Arbitration Bypass OccupiedSchedule Master SchedMaster Recovery Ramping for Heat Pump SystemsTime Clock OccTimeClock Setpoint RampingFAN Operation Window Sensor StatusWndwSmoke Control Demand Limit Control DLCDirty Filter Monitor Temperature Control OperationsSee for a diagram of a typical W7750 Unit TWO Stages Staged Cooling ControlONE Stage Three StagesPulse Width Modulating PWM Control Cascade Control of Modulating COOLING/HEATINGSeries 60 Modulating Control Outdoor AIR Lockout of HEATING/COOLINGFreeze Stat Economizer ENABLE/DISABLE ControlIndoor AIR Quality IAQ Override Discharge AIR LOW Limit ControlEnergy Management Points Address Input Output Points AddressControl Parameters Address Status Points AddressMappable User Addresses and Table Number CO2 Concentration Relative TemperatureAir Flow EnthalpyValid states and the corresponding Application reset therefore, these points canPlaced in manual mode through a menu Enumerated values are shownNvName Field Name DefaultInput/Output Points Comments255 NciIoSelect DigitalIn2 NciIoSelect DigitalIn1Occsensor Shcedmasterin Occsensor UnuseddiCOOLSTAGE3 COOLSTAGE1COOLSTAGE2 COOLSTAGE4Sixtyfifty SiinvalidTrue PPM SiinvalidFalse StatusDI3 NvoIO UbDigitalIn EconEnSw NvoIO EconEnableInPosition when poor indoor air quality is detected OccSensr NvoIODefault Comments NvNameControl Parameters MinClRamp NciAux1SetPt UbMinClRampS0 Degrees F/Hr OdEnthalpyEnableMaxClRamp NciAux1SetPt UbMaxClRampS0 Degrees F/Hr MaxClRamp, OdTempMaxClRamp,PPM Gain for the cooling control loop Discharge air temperature cascade control loopGainCoolProp NciAux2SetPt UbKpCoolS2 Degrees F Degrees C GainHeatProp NciAux2SetPt UbKpHeatS2 Degrees F Degrees CEnergy Management Points Auxiliary functions. nviFree1 controls the FREE1OUT Refer to WSHPEnable.valueNviFree1 Value Network variable input failsRefer to nviTimeClk.value NviTimeClk ValueDestTimeClk NviTimeClk State 255 SrcTimeClkCt NvoTimeClk ValueStatus Points Bit Offset = FrostProtectAlrm Alarmbit1Bit Offset = SensorFailAlrm Bit Offset = InvalidSetPtAlrmSmokealarm NoalarmNodedisabled UpdateallfieldsHeat DisabledmodeStartupwait CoolNciAux1SetPts.ubOdEnthalpyEnableS2 StatusEconEn NvoData1 EconEnableAir flow switch is configured StatusManOcc NvoData1 NetManOccCoolStgsOn NvoData1 CoolStagesOn HeatStgsOn NvoData1 HeatStagesOnAuxiliary heating stages are turned on For both heating or coolingController mode is switched to Freezeprotect Is 1, the algorithm controls as per the settings foundNciConfig.SmokeControl MonitorSw NvoData1 MonSwitchSpacetempfield BypasstimerfieldTempcontrolptfield DischargetempfieldUbinvalid NvoError Errorbit0 StatusError NvoError Errorbit0SpaceTempError Bit Offset = Temperature SetPtError NvoError Errorbit0Are disabled as if the sensor was not configured NvoError Errorbit1Bit Offset = RtnEnthalpyError NvoError Errorbit1 Bit Offset = SpaceCO2Error NvoError Errorbit1Bit Offset = NvTodEventError NvoError Errorbit3 Bit Offset = NvWindowError NvoError Errorbit2Bit Offset = NvDlcShedError NvoError Errorbit2 Bit Offset = NvByPassError NvoError Errorbit3Cfgnul CfglocalCfgexternal Calibration PointsConfiguration Parameters False True CascCntrl NciConfig CascadeControl DisMinHtTime NciConfig DisableHeatMinTimeDisMinClTime NciConfig DisableCoolMinTime UseRaTempCtl NciConfigNone Normal Last NETOffset Absolutemiddle BypassonlyLonmark /Open System Points Hvacmrngwrmup Hvacprecool Hvaccool Hvacnightpurge Hvacnul HvacautoHvacheat HvacoffSNVTtempp 14 to 74-2958 100DestRmTemp NviSpaceTemp Degrees F SrcRmTemp NvoSpaceTemp Degrees FHvactest Hvacauto HvacnulHvacmrngwrmup Alarmnotifydisabled 255 Not configured 74-2958 NvoStatus Electricalfault103 NvoStatus Inalarm NvoStatus UnabletomeasureSwon SrcEconEnable NvoEcon State On other nodes. If the economizer function is configured byCorresponding economizer function is not enabled because SrcEconEnCt NvoEcon ValueDirect Access And Special Points OFF Data Share Points = including mapped points and others for Approximate Memory Size Estimating Procedure=using One-to-Many and not using points Mapped points = number of mapped points per ExcelSensor Type Sensor Resistance Versus Temperature Resistance OhmsResistance Sensors Sensor UseT7770B,C 10K ohm setpoint potentiometer Relative Offset Setpoint TemperatureDirect Setpoint Temperature Above and Below Setpoint Resistance OhmsSensor Voltage Versus Humidity Relative Humidity Percentage Voltage/Current SensorsSensor Voltage Versus Humidity Humidity Percentage Sensor Current Versus Enthalpy volts Enthalpy mA 113 74-2958MAmAmAmA AmA mA mA T7242 or equivalent74-2958 114 Sensor Voltage Versus Input Voltage To A/D Voltage to A/D Inw Sensor Voltage Vdc Versus Pressure InwPressure Inw kPa Sensor Voltage Vdc 50.0.13