Honeywell W7750A Staged Cooling Control, ONE Stage, TWO Stages, Three Stages, Four Stages

Page 60

EXCEL 10 W7750A,B,C CONSTANT VOLUME AHU CONTROLLER

STAGED COOLING CONTROL

The Excel 10 W7750 Controller supports up to four stages of D/X cooling. As space temperature rises above the current Cooling Setpoint, the controllers mode of operation is switched to the COOL mode. When in the COOL mode, all heating outputs are driven closed or off (with the exception that occurs during IAQ Override Operation, see above), and the staged cooling outputs are enabled for use. When in the COOL mode, the PID cooling control algorithm compares the current space temperature to the EffectiveCoolSetPt, and

calculates a PID error signal. This error signal causes the cooling stage outputs to be cycled as required to drive the space temperature back to the setpoint. Fig. 50 illustrates the relationship between PID error and staged output activity. As the error signal increases and the space temperature is getting farther away from setpoint, or is remaining above setpoint as time elapses, additional stages of cooling are energized until, if PID error reaches 100 percent, all configured stages are on.

PID

ERROR

NO. STAGES

0%

25%

33%

50%

66%

75%

100%

> 100%

CONFIGURED

 

 

 

 

 

 

 

 

 

 

 

 

 

ALL STAGES

 

 

 

 

 

 

 

 

 

 

 

 

 

ONE STAGE

 

 

 

 

 

CYCLING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOCKED ON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TWO STAGES

 

STAGE 1

 

 

STAGE 1 LOCKED ON

 

 

ALL STAGES

 

 

 

 

 

 

CYCLING

 

 

STAGE 2 CYCLING

 

 

LOCKED ON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THREE STAGES

 

STAGE 1

 

STAGE 1 LOCKED ON

 

STAGE 1,2 LOCKED ON

 

ALL STAGES

 

CYCLING

 

STAGE 2 CYCLING

 

 

STAGE 3 CYCLING

 

 

LOCKED ON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STAGE 1

 

STAGE 1,2

 

STAGE 1,2,3

 

 

 

FOUR STAGES

STAGE 1

 

LOCKED ON

 

LOCKED ON

 

LOCKED ON

 

 

ALL STAGES

 

CYCLING

 

 

STAGE 2

 

STAGE 3

 

STAGE 4

 

 

LOCKED ON

 

 

 

 

CYCLING

 

CYCLING

 

CYCLING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M10112

Fig. 50. Staged output control versus PID Error.

If economizer dampers are configured, and the outdoor air is suitable for free cooling, the economizer operates as the first stage of cooling. For example, if a controller was configured with two stages of mechanical cooling and an economizer, the application should be viewed in Fig. 50 as a three-stage system.

Setpoints for the PID gains allow for unit-by-unit adjustment of the control loop, if required; however, any change from the default values should be minimal.

The PID control algorithm used to control staged cooling is anticipator-driven, and is similar to the algorithm used in the T7300 commercial thermostat. All staging events are subject to a minimum interstage time delay, which is based on the cycles per hour user setting (CoolCycHr). The minimum interstage time delay ranges from 90 seconds (at 12 cycles per hour) to 8.5 minutes (at two cycles per hour), see Table

17.The user has the option to disable the minimum run timer (DisMinClTimer for cooling). If the minimum run timer is disabled, the interstage time delay is fixed at 20 seconds. The cycling rate is separately selectable for heating and cooling between 2 and 12 cycles per hour (cph).

Table 17. Interstage Minimum Times

 

 

Cycles/Hour Selection

Minimum On/Off time (Min.)

 

 

2

8.5

 

 

3

5.5

 

 

4

4.0

 

 

5

3.5

 

 

6

3.0

 

 

7

2.5

 

 

8

2.0

 

 

9

2.0

 

 

10

2.0

 

 

11

1.5

 

 

12

1.5

 

 

STAGED HEATING CONTROL

The Excel 10 W7750B,C Controller supports up to four stages of heating. As space temperature falls below the current Cooling Setpoint, the controller mode of operation is switched to the HEAT mode. When in the HEAT mode, all cooling outputs are driven closed or off, and the staged heating outputs are enabled for use. When in the HEAT mode, the PID

74-2958— 1

60

Image 60
Contents Excel General Considerations W7750 Controllers Appendices72-2958 List of Figures 74-2958Setpoint ramping parameters with ramp rate calculation 74-2958List of Tables Description of Devices Typical system overviewControl Application Control ProvidedProducts Covered Organization of ManualApplicable Literature Form No TitleProduct Names Agency ListingsAbbreviations and Definitions Construction ControllersW7750A DI-1Performance Specifications PowerSpecial Note for the W7750B,C Unit Specified Space Temperature Sensing Range CPUMemory Capacity Excel 10 W7750C Constant Volume AHU Controller Jack DIN rail adapters Lonmark Functional ProfileInputs/Outputs Analog InputsDigital Inputs Triac Outputs on the W7750B,C Models onlyDigital Outputs Wall Modules Duct SensorT7770A1006 T7770CT7560A,B construction in in. mm Configurations GeneralConfiguration Options Summary For W7750A,B,C Controllers Allowable Heating and Cooling Equipment Configurations Staged HEATING/COOLING ControlHeat Pump Control Modulating HEATING/COOLING ControlEconomizer Control Pneumatic Actuator ControlOccupancy Sensor Window Open/Closed Digital InputWall Module Options MIXED-OUTPUT-TYPE ControlModes of Operation Dirty Filter MonitorIndoor Air Quality IAQ Override Smoke ControlOFF Mode DisabledNot AssignedOverview Plan the SystemDetermine Other Bus Devices Required Step No DescriptionLay Out Communications and Power Wiring Lonworks Bus LayoutExcel VAV Cvahu Power Wiring Power Budget Calculation ExampleDeviceVA Information Obtained from VA Ratings For Transformer Sizing Device Description ML6161A/B Damper Actuator, 35 lb-in R8242A ContactorML7984B PWM Valve Actuator Line LossPower wiring details for one Excel 10 per Transformer Nema class 2 transformer voltage output limitsPrepare Wiring Diagrams General ConsiderationsW7750 Controllers Factory Default Digital Outputs Terminal Terminal Number DescriptionConstant Volume AHU Controller ML6161 Floating Actuator COM CCW Load Controller Power Heat Wall Economizer Damper PWM Actuator Power Signal W7750C Constant Lonworks Bus Termination Module Pneumatic transducer to W7750B,C Shown, see triangle noteBrown Orange Lonworks Bus termination wiring options Order EquipmentT7770 and T7560 Wall Modules Honeywell Logo T7770D1018Sensor with Bypass/LED and Lonworks Jack Accessories Sensors AccessoriesEchelon Based Components and Parts Configure Controllers TroubleshootingTroubleshooting Excel 10 Controllers and Wall Modules CablingAlarms Excel 10 AlarmsResistance Value ohms Broadcasting the Service Message W7750 Controller Status LEDAppendix A. Using E-Vision to Commission a W7750 Controller Setting the Pid ParametersT7770C,D Wall Module Bypass Pushbutton and Override LED Sensor CalibrationAppendix B. Sequences of Operation Common Operations Room Temperature Sensor RmTemp HeatingEconomizer IAQ OptionBypass Mode StatusOvrd and StatusLed Remote Setpoint RmtStptPotSetpoint Limits LoSetptLim and HiSetptLim BypassTimeContinuous Unoccupied Mode Occupancy Mode and Manual Override ArbitrationNot Assigned Bypass OccupiedRecovery Ramping for Heat Pump Systems Time Clock OccTimeClockSchedule Master SchedMaster Setpoint RampingWindow Sensor StatusWndw Smoke ControlFAN Operation Demand Limit Control DLCTemperature Control Operations See for a diagram of a typical W7750 UnitDirty Filter Monitor Staged Cooling Control ONE StageTWO Stages Three StagesCascade Control of Modulating COOLING/HEATING Series 60 Modulating ControlPulse Width Modulating PWM Control Outdoor AIR Lockout of HEATING/COOLINGEconomizer ENABLE/DISABLE Control Indoor AIR Quality IAQ OverrideFreeze Stat Discharge AIR LOW Limit ControlInput Output Points Address Control Parameters AddressEnergy Management Points Address Status Points AddressMappable User Addresses and Table Number Relative Temperature Air FlowCO2 Concentration EnthalpyApplication reset therefore, these points can Placed in manual mode through a menuValid states and the corresponding Enumerated values are shownDefault Input/Output PointsNvName Field Name CommentsNciIoSelect DigitalIn1 Occsensor Shcedmasterin255 NciIoSelect DigitalIn2 Occsensor UnuseddiCOOLSTAGE1 COOLSTAGE2COOLSTAGE3 COOLSTAGE4Sixtyfifty SiinvalidPPM Siinvalid FalseTrue EconEnSw NvoIO EconEnableIn Position when poor indoor air quality is detectedStatusDI3 NvoIO UbDigitalIn OccSensr NvoIODefault Comments NvNameControl Parameters OdEnthalpyEnable MaxClRamp NciAux1SetPt UbMaxClRampS0 Degrees F/HrMinClRamp NciAux1SetPt UbMinClRampS0 Degrees F/Hr MaxClRamp, OdTempMaxClRamp,PPM Discharge air temperature cascade control loop GainCoolProp NciAux2SetPt UbKpCoolS2 Degrees F Degrees CGain for the cooling control loop GainHeatProp NciAux2SetPt UbKpHeatS2 Degrees F Degrees CEnergy Management Points Refer to WSHPEnable.value NviFree1 ValueAuxiliary functions. nviFree1 controls the FREE1OUT Network variable input failsNviTimeClk Value DestTimeClk NviTimeClk StateRefer to nviTimeClk.value 255 SrcTimeClkCt NvoTimeClk ValueStatus Points Alarmbit1 Bit Offset = SensorFailAlrmBit Offset = FrostProtectAlrm Bit Offset = InvalidSetPtAlrmNoalarm NodedisabledSmokealarm UpdateallfieldsDisabledmode StartupwaitHeat CoolStatusEconEn NvoData1 EconEnable Air flow switch is configuredNciAux1SetPts.ubOdEnthalpyEnableS2 StatusManOcc NvoData1 NetManOccHeatStgsOn NvoData1 HeatStagesOn Auxiliary heating stages are turned onCoolStgsOn NvoData1 CoolStagesOn For both heating or coolingIs 1, the algorithm controls as per the settings found NciConfig.SmokeControlController mode is switched to Freezeprotect MonitorSw NvoData1 MonSwitchBypasstimerfield TempcontrolptfieldSpacetempfield DischargetempfieldUbinvalid StatusError NvoError Errorbit0 SpaceTempErrorNvoError Errorbit0 Bit Offset = Temperature SetPtError NvoError Errorbit0NvoError Errorbit1 Bit Offset = RtnEnthalpyError NvoError Errorbit1Are disabled as if the sensor was not configured Bit Offset = SpaceCO2Error NvoError Errorbit1Bit Offset = NvWindowError NvoError Errorbit2 Bit Offset = NvDlcShedError NvoError Errorbit2Bit Offset = NvTodEventError NvoError Errorbit3 Bit Offset = NvByPassError NvoError Errorbit3Cfglocal CfgexternalCfgnul Calibration PointsConfiguration Parameters False True DisMinHtTime NciConfig DisableHeatMinTime DisMinClTime NciConfig DisableCoolMinTimeCascCntrl NciConfig CascadeControl UseRaTempCtl NciConfigLast NET Offset AbsolutemiddleNone Normal BypassonlyLonmark /Open System Points Hvacauto HvacheatHvacmrngwrmup Hvacprecool Hvaccool Hvacnightpurge Hvacnul Hvacoff74-2958 100 DestRmTemp NviSpaceTemp Degrees FSNVTtempp 14 to SrcRmTemp NvoSpaceTemp Degrees FHvacauto Hvacnul HvacmrngwrmupHvactest Alarmnotifydisabled NvoStatus Electricalfault 103 NvoStatus Inalarm255 Not configured 74-2958 NvoStatus UnabletomeasureSwon On other nodes. If the economizer function is configured by Corresponding economizer function is not enabled becauseSrcEconEnable NvoEcon State SrcEconEnCt NvoEcon ValueDirect Access And Special Points OFF Data Share Points Approximate Memory Size Estimating Procedure =using One-to-Many and not using points= including mapped points and others for Mapped points = number of mapped points per ExcelSensor Resistance Versus Temperature Resistance Ohms Resistance SensorsSensor Type Sensor UseOffset Setpoint Temperature Direct Setpoint TemperatureT7770B,C 10K ohm setpoint potentiometer Relative Above and Below Setpoint Resistance OhmsVoltage/Current Sensors Sensor Voltage Versus Humidity Humidity PercentageSensor Voltage Versus Humidity Relative Humidity Percentage Sensor Current Versus Enthalpy volts Enthalpy mA 113 74-2958T7242 or equivalent 74-2958 114MAmAmAmA AmA mA mA Sensor Voltage Versus Input Voltage To A/D Voltage to A/D Sensor Voltage Vdc Versus Pressure Inw Pressure Inw kPa Sensor Voltage VdcInw 50.0.13