Emerson VE Set Up Custom Alarms, Standard Custom Alarm Messages, Setup Water Detect Floor Plan

Page 30

Advanced Microprocessor with Graphics Control Setup

4.4.4Set Up Custom Alarms

Selecting SETUP CUSTOM ALARMS will step to the following menu:

SETUP CUSTOM ALARM TEXT

CHANGE CUSTOM TEXT 1

CHANGE CUSTOM TEXT 2

CHANGE CUSTOM TEXT 3

CHANGE CUSTOM TEXT 4

The custom alarm messages can be selected from a list of standard messages or you can write your own messages. The message selected for any custom alarm can be changed at any time by selecting SETUP CUSTOM ALARM TEXT. Five standard messages (see Standard Custom Alarm Mes- sages below) and four custom messages are available to choose from. To modify the custom messages press CHANGE CUSTOM TEXT 1 (2, 3 or 4). Each message can be up to 20 characters in length and can be any of the following characters (or a blank space): ABCDEFGHIJKLMNOPQRSTU- VWXYZ#%*-0123456789.

Standard Custom Alarm Messages

WATER UNDER FLOOR

SMOKE DETECTED

STANDBY GC PUMP ON

LOSS OF WATER FLOW

STANDBY UNIT ON

For more information concerning alarms, see 6.0 - Alarm Descriptions and Solutions.

4.4.5View Water Detect Floor Plan (for optional LTM1000/LT750)

When water is detected the alarm will sound and the WATER UNDER FLOOR alarm message will be displayed. To see where the water is in the room, select VIEW/SET ALARMS from the Main Menu, then VIEW WATER DETECT FLOOR PLAN. A tile will be highlighted and blinking to indicate the position of the detected water.

4.4.6Setup Water Detect Floor Plan

The water detection display is designed to graphically display the location of water under a raised floor when connected to an LT750 water detection system. The selected (i.e., cursor) floor tile will be highlighted and blinking. The UP and DOWN arrow keys are used to position the cursor tile. The UP key will move the cursor tile up and then it wraps around to the bottom of the next column to the right. The DOWN arrow key moves the cursor down, then to the top of the next column to the left. The cursor will also wrap around from the right top tile to the left bottom tile and back.

There are three different types of tiles to be defined: the environmental unit, the LT750 and sensor cable tiles. To set up the cable layout, first move the cursor to the location of the environmental unit and press the ENTER key. A rectangular box will be drawn at that location. Then move the cursor to the location of the LT750 and press the ENTER key. A solid circle will be drawn on the display. No tile can have two definitions, so if the LT750 is physically directly under the unit, it has to be defined at least one tile away.

The sensor cable should not be defined one tile at a time. The only sensor cable tiles that need to be defined are the tiles where the cable is going to change direction, and the last tile. The display will automatically define any tiles between two consecutively defined sensor tiles to be sensor tiles.

The ENTER key is also used to undo tile definitions. If a tile is defined in the wrong place, position the cursor on that tile and press the ENTER key. It will undefine the tile under the cursor and move the cursor back to the last defined tile. The entire layout can be erased by successively pressing the ENTER key. When the last tile is defined, press the ESCape key to leave the setup screen.

Installation—LT750 DIP Switch Settings

Install the LT750 following the instructions in the LT750 Users Manual. The following additional switch selections should be made when connecting to an Advanced Microprocessor control:

DIP SW3-4 Off-(water alarm relay energizes for alarm)

DIP SW3-5 Off-(cable fault relay energizes for alarm)

Switch 1 - Off-(LT750 sources power for 4-20 mA loop)

22

Image 30
Contents Liebert Deluxe System/3 Page Table of Contents Main Menu AG-Run Diagnostics Alarm Descriptions and Solutions Temperature ControlSystem Testing Figures Page System Description IntroductionChilled Water Systems Glycool Chilled Glycol Cooling SystemsDual Source Cooling Systems Initial START-UP Procedure Additional Considerations for Upflow UnitsAdvanced Microprocessor Controls Setup BasicsDisplay the Main Menu-AM Control Advanced microprocessor AM control menu Alarm History Log Main Menu AM-Status/Alarm DataActive Alarms Operating StatusDefault control and alarm setpoints Main Menu AM-Setpoints/SetupSetup System Selection Analog SensorsSetup Operation Setup functions and factory default valuesFunction Default Range Select Options Show DIP SwitchesDIP switch settings Calibrate SensorsSetup Alarms Select Control TypeAlarm default time delay Alarm Default Delay secondsStandard Alarm Messages Analog SetupHumidity Control Method Calibrate Actuator Run DiagnosticsSet Status Display Show InputsTest Outputs Change PasswordsMain Menu AM-Date and Time Test Control BoardLoad Control Features Main Menu AM-Status DisplayControl Circuit Board Nonvolatile Memory DIP SwitchesCommunications Control OutputsMonitor functions View/Change FunctionsAdvanced Microprocessor with Graphics Control Setup Advanced microprocessor with graphics control panelAdvanced microprocessor with graphics AG control menu Main Menu AG-View/Set Alarms Display the Main Menu-AG ControlMain Menu AG-Status Display Default Time Delay Alarm SecondsSetup Water Detect Floor Plan Set Up Custom AlarmsStandard Custom Alarm Messages Installation-LT750 DIP Switch SettingsMain Menu AG-Setup System Main Menu AG-Operating StatusMain Menu AG-View/Set Control Setpoints Default Settings and Ranges Cold Start DelayAuto Restart Delay IR Flush Overfill infrared humidifiers onlyCalibrate Valve Actuator Select Control AlgorithmMain Menu AG-Run Diagnostics Select Humidity Sensing ModeShow Inputs Dehumidification with Normal or Delayed Reheat Main Menu AG-Date and TimeMain Menu AG-Plot Graphs Main Menu AG-Analog/Digital Inputs Read Digital Inputs Set Up Digital InputsMain Menu AG-View Run Hours Log View 24 Hour Run Time HistoryControl Circuit Board On/Off Status Time View Only Silence Alarm Temperature Control Response by Control TYPE-ADVANCED Microprocessor ControlsChilled Water Cooling Glycool CoolingDual Cooling Source Heating Operation Electric ReheatDehumidification/Humidification Required, in Percent % Humidity ControlHot Water/Steam Heat Control Types Proportional ControlDual Cooling Source Dehumidification Chilled Water DehumidificationHumidification Operation System Activation Suggested System Tuning Procedure Intelligent Control Load Control Features Changing factory-set sensor inputs Connecting the Analog SensorsAnalog Sensors Additional connections available after unit deliverySetup Water Detection DisplayPhysical Connections Calibration View/Change Functions Change Filter Standard AlarmsAlarm Descriptions and Solutions Compressor OverloadHigh Temperature and Low Temperature Simultaneously Custom Alarms Only With Advanced ControlsHigh Temperature Humidifier Problem Infrared HumidifiersLoss of Air Flow Loss of PowerLow Temperature Low HumidityOptional/Custom Alarms Environmental Control Functions System TestingComponent Operation and MAINTENANCE, Checks and Adjustments Proportional Heating/Cooling/ DehumidificationControl Transformer and Fuses Fan Safety SwitchElectric Panel FirestatFan Impellers and Bearings FiltersBlower Package BeltsRefrigeration System Electronic Variable Speed Drive InverterCompressor Oil Level Suction Superheat Suction PressureDischarge Pressure Thermostatic Expansion Valve OperationAdjustment Hot Gas Bypass Valve OperationOutdoor fan/condenser configuration Air Cooled CondenserGlycol Solution Maintenance Adjustment Johnson Controls/Penn Johnson valvesTesting Function of Valve Water/Glycol Cooled Condensers Shell and Tube CondensersCompressor Replacement Mechanical FailureElectrical Failure Compressor Replacement Procedure HumidifierInfrared Humidifier Autoflush Operation Autoflush Infrared Humidifier Cleaning SystemChanging Humidifier Lamps Humidifier lampsSteam Generating Humidifier Steam generating humidifierControls Replacing the CanisterFaults-canister generator humidifier Humidifier canister part numbersPriority Name LED Indication Description Capacity Circuit Board AdjustmentsSteam generating humidifier capacity Hz Models Lbs/hr kg/hrElectric Reheat Unit Rated Rated Values Voltage CapacityVoltage AMP Set Pt Chilled water troubleshooting TroubleshootingBlower troubleshooting Symptom Possible Cause Check or RemedyCompressor and refrigeration system troubleshooting Compressor and refrigeration system troubleshooting Dehumidification troubleshooting Glycol pumps troubleshootingHumidifier-steam generator troubleshooting Adjustments onHumidifier-infrared troubleshooting Reheat troubleshootingMaintenance Inspection CHECKLIST-MONTHLY Maintenance Inspection CHECKLIST-SEMIANNUAL Ti n Ne tIti That

VE, DH, VH, DE specifications

Emerson is a well-known brand in the field of automation solutions, offering a range of products that cater to various industries. Among its diverse portfolio, Emerson’s products like DE (Digital Electronics), VH (Variable Frequency Drives), DH (Distributed Control Systems), and VE (Valve Positioners) stand out for their advanced features, cutting-edge technologies, and unique characteristics.

Digital Electronics (DE) from Emerson represents the backbone of modern automation systems. These devices are characterized by their highly reliable digital communication capabilities, providing robust solutions for process monitoring and control. DE products integrate seamlessly with various automation platforms, allowing for easy data exchange and system interoperability. The advanced analytics embedded in these systems enable predictive maintenance strategies, enhancing overall operational efficiency.

Variable Frequency Drives (VH) are integral to motor control technologies, maximizing energy efficiency in various applications. Emerson's VH drives are designed for flexibility, supporting multiple motor types and configurations. These drives utilize pulse width modulation (PWM) technology, allowing for precise speed control and improved application performance. Their built-in protection features help extend motor life, prevent downtime, and reduce maintenance costs. Furthermore, the user-friendly interfaces of VH drives facilitate quick setup and troubleshooting.

Distributed Control Systems (DH) from Emerson provide a holistic approach to managing complex industrial processes. They enable centralized control while ensuring that local operations continue seamlessly. DH systems are characterized by their modular architecture, making them highly scalable and adaptable to changing operational needs. Advanced control algorithms within these systems help optimize processes, ensuring maximum productivity. Additionally, their enhanced cybersecurity features protect critical industrial operations from potential threats.

Emerson's Valve Positioners (VE) play a crucial role in regulating flow and pressure in various processes. These devices provide precise positioning capabilities, enhancing the performance of control valves. The VE systems incorporate smart technologies such as adaptive control and diagnostics, allowing them to self-tune and deliver accurate performance over time. Their compact design and robust build ensure they operate effectively in challenging environments.

In summary, Emerson's DE, VH, DH, and VE offerings embody the latest innovations in automation technology. Their main features, including digital communication, energy efficiency, scalability, and precision control, cater to the diverse demands of modern industries. With these products, Emerson not only enhances operational efficiency but also paves the way for intelligent automation solutions that are crucial for the future of industrial processes.