Status Registers

Use Status Registers to Determine the State of Analyzer Events and Conditions

STATus:OPERation Condition and Event Enable Registers

The STATus:OPERation condition register continuously monitors the hardware and firmware status of the analyzer, and is read-only. To query the register, send the :STATus:OPERation:CONDition? command. The response will be the decimal sum of the bits that are set to 1. For example, if bit number 9 and bit number 3 are set to 1, the decimal sum of the 2 bits is 512 plus 8. So the decimal value 520 is returned.

The transition filter specifies which types of bit state changes in the condition register will set corresponding bits in the event register. The changes may be positive (from 0 to 1) or negative (from 1 to 0). Send the

:STATus:OPERation:NTRansition <num> (negative transition) command or the :STATus:OPERation:PTRansition <num> (positive transition) command (where <num> is the sum of the decimal values of the bits you want to enable).

The STATus:OPERation event register latches transition events from the condition register as specified by the transition filters. Event registers are destructive read-only data. Reading data from an event register will clear the content of that register. To query the event register, send the

:STATus:OPERation:[:EVENt]? command.

The STATus:OPERation event enable register lets you choose the bits that will set the operation status summary bit (bit 7) of the status byte register to 1. Send the

:STATus:OPERation:ENABle <num> command where <num> is the sum of the decimal values of the bits you want to enable.

For example, to enable bit 9 and bit 3 (so that whenever either bit 9 or 3 is set to 1, the operation status summary bit of the status byte register will be set to 1), send the :STATus:OPERation:ENABle 520 (512 + 8) command. The :STATus:OPERation:ENABle? command returns the decimal value of the sum of the bits previously enabled with the :STATus:OPERation:ENABle <num> command.

STATus:QUEStionable Registers

STATus:QUEStionable registers monitor the overall analyzer condition. They are accessed with the :STATus:OPERation and :STATus:QUEStionable commands in the :STATus command subsystem.

The STATus:QUEStionable registers also monitor the analyzer to see if there are any questionable events that occurred. These registers look for anything that may cause an error or that may induce a faulty measurement. Signs of a faulty measurement include the following:

hardware problems

out of calibration situations

unusual signals

Chapter 2

73

Page 73
Image 73
Agilent Technologies Model  A.08.xx STATusOPERation Condition and Event Enable Registers, STATusQUEStionable Registers

Model A.08.xx specifications

Agilent Technologies has long been a leader in the field of measurement and analytical instrumentation, and their Model A.08.xx is a prime example of this expertise. This advanced instrument is designed for a wide array of applications, spanning from life sciences to chemical analysis, offering unparalleled precision and reliability to meet the demands of laboratory environments.

One of the main features of the A.08.xx model is its advanced measurement capabilities. The instrument boasts a high-resolution detector that provides exceptional sensitivity, allowing researchers to detect even trace levels of analytes in complex samples. The enhanced signal-to-noise ratio is particularly beneficial for users working with low concentrations, ensuring accurate results without the need for laborious sample preparation.

The A.08.xx is equipped with state-of-the-art technologies that significantly enhance its performance. One such technology is its multi-wavelength detection system, which allows simultaneous analysis of multiple compounds within a single run. This not only boosts efficiency but also reduces the time required for method development and validation. Additionally, the model utilizes sophisticated software for data analysis, providing users with intuitive tools to interpret results quickly and effectively.

Another characteristic of the A.08.xx is its robust build quality and user-friendly interface. Designed for rigorous laboratory use, the instrument can withstand the demanding conditions of a busy research environment. Its intuitive touchscreen display simplifies operations, allowing users to set up experiments and navigate through various functions with ease. This user-centric design reduces the learning curve for new operators, enhancing productivity in the lab.

The A.08.xx also incorporates connectivity features that align with modern laboratory needs. With options for remote monitoring and data sharing, researchers can easily collaborate and access results in real-time, streamlining workflows and promoting innovation.

In conclusion, Agilent Technologies’ Model A.08.xx is not just an analytical instrument; it is a comprehensive solution for researchers and scientists seeking reliability and performance in their analytical work. With its advanced measurement capabilities, cutting-edge technologies, and user-friendly design, it continues to set the standard for excellence in laboratory instrumentation, facilitating groundbreaking research across various scientific fields.