9. Statistic FormulakTest

Test

 

 

 

 

 

 

 

 

 

 

 

1-Sample Z Test

z = (o μ0)/(σ/'n )

 

 

 

 

 

 

 

2-Sample Z Test

z = (o1 o2)/

(σ 12/n1) + (σ 22/n2)

 

 

 

 

 

 

1-Prop Z Test

z = (x/n p0)/

p0(1 – p0)/n

 

 

 

 

 

2-Prop Z Test

z = (x1/n1 x2/n2)/

(1 – )(1/n1 + 1/n2)

 

 

 

 

1-Sample t Test

t = (o μ0)/(sx/'n )

 

 

 

 

 

 

 

t = (o1 o2)/ sp2(1/n1 + 1/n2)

 

 

2-Sample t Test (pooled)

sp = ((n1 – 1)sx12 + (n2 – 1)sx22)/(n1 + n2 – 2)

 

df = n1 + n2 − 2

 

 

 

 

 

 

 

 

t = (o1 o2)/ sx12/n1 + sx22/n2

 

 

2-Sample t Test (not pooled)

df = 1/(C2/(n1 – 1) + (1 – C)2/(n2 – 1))

 

C = (sx12/n1)/(sx12/n1 + sx22/n2)

 

 

 

 

 

 

 

 

 

n

 

 

n

 

 

 

b = Σ(xi o)(yi p)/Σ(xi o)2

a = p bo

LinearReg t Test

i=1

 

 

i=1

 

 

 

 

 

 

 

 

 

t = r n – 2)/(1 – r2)

 

 

 

 

 

 

 

 

 

 

 

 

 

Oi: The i-th element of the

χ2 GOF Test

k

 

 

 

 

observed list

χ2 = Σ(Oi Ei)2 /Ei

Ei: The i-th element of the

 

i

 

 

 

 

 

 

 

 

 

expected list

 

 

 

 

 

 

 

 

k

R

 

 

Oij: The element at row i, column

 

χ2 = ΣΣ(Oij

Eij)2 /Eij

χ2 two-way Test

i

j

 

 

 

j of the observed matrix

k

R

k R

Eij: The element at row i, column

 

Eij = ΣOij ΣOij /

Σ ΣOij

 

i=1

j=1

i=1 j=1

 

j of the expected matrix

 

 

 

 

 

 

2-Sample F Test

F = sx12/sx22

 

 

 

 

 

 

 

 

 

F = MS/MSe

MS = SS/Fdf

MSe = SSe/Edf

 

k

 

 

 

k

 

ANOVA Test

SS = Σni (oi o)2

SSe = Σ(ni – 1)sxi2

i=1

 

 

 

i=1

 

 

 

 

 

k

 

 

Fdf = k − 1

 

Edf = Σ(ni – 1)

 

 

 

 

 

i=1

 

 

 

 

 

 

 

 

6-68