Chapter 22 DLPs A500 to A599

DLP- A542 Create an IP-Over-CLNS Tunnel

DLP-A542 Create an IP-Over-CLNS Tunnel

Purpose

This task creates an IP-over-CLNS tunnel to allow ONS 15454s to

 

communicate across equipment and networks that use the OSI protocol

 

stack.

Tools/Equipment

None

Prerequisite Procedures

DLP-A60 Log into CTC, page 17-69

Required/As Needed

As needed

Onsite/Remote

Onsite or remote

Security Level

Provisioning or higher

Caution IP-over-CLNS tunnels require two end points. You will create one point on an ONS 15454. The other end point is generally provisioned on non-ONS equipment including routers and other network elements (NE). Before you begin, verify that you have the capability to create an OSI over IP tunnel on the other equipment location.

Step 1 In node view, click the Provisioning > OSI > Tunnels tabs.

Step 2 Click Create.

Step 3 In the Create IP Over OSI Tunnel dialog box, complete the following fields:

Tunnel Type—Choose a tunnel type:

Cisco—Creates the proprietary Cisco IP tunnel. Cisco IP tunnels add the CLNS header to the IP packets.

GRE—Creates a Generic Routing Encapsulation tunnel. GRE tunnels add the CLNS header and a GRE header to the IP packets.

The Cisco proprietary tunnel is slightly more efficient than the GRE tunnel because it does not add the GRE header to each IP packet. The two tunnel types are not compatible. Most Cisco routers support the Cisco IP tunnel, while only a few support both GRE and Cisco IP tunnels. You generally should create Cisco IP tunnels if you are tunneling between two Cisco routers or between a Cisco router and an ONS node.

Caution Always verify that the IP-over-CLNS tunnel type you choose is supported by the equipment at the other end of the tunnel.

IP Address—Enter the IP address of the IP-over-CLNS tunnel destination.

IP Mask—Enter the IP address subnet mask of the IP-over-CLNS destination.

OSPF Metric—Enter the Open Shortest Path First (OSPF) metric for sending packets across the IP-over-CLNS tunnel. The OSPF metric, or cost, is used by OSPF routers to calculate the shortest path. The default is 110. Normally, it is not be changed unless you are creating multiple tunnel routes and want to prioritize routing by assigning different metrics.

NSAP Address—Enter the destination NE or OSI router NSAP address.

Step 4 Click OK.

 

Cisco ONS 15454 Procedure Guide, R7.0

22-48

November 2007

Page 48
Image 48
Cisco Systems ONS 15454 manual DLP-A542 Create an IP-Over-CLNS Tunnel, 22-48

ONS 15454 specifications

Cisco Systems ONS 15454 is a versatile optical networking platform designed to enable service providers and enterprises to deploy and manage robust optical networks efficiently. The ONS 15454 serves as a cornerstone in the evolution of transport networks, featuring various technologies that meet the increasing demand for bandwidth and service quality.

One of the standout features of the ONS 15454 is its support for multiple service types, including TDM, Ethernet, and Wavelength Division Multiplexing (WDM). This capability allows service providers to maximize network resources while delivering a wide range of services, from traditional voice to high-speed data and video.

The ONS 15454 leverages Dense Wavelength Division Multiplexing (DWDM) technology, enabling the transmission of multiple data streams over a single optical fiber. This effectively expands the network's capacity without the need for additional infrastructure, a crucial benefit in today's ever-growing data landscape. The system supports a variety of transponder modules, allowing for flexible scaling and seamless upgrades as bandwidth requirements increase.

Scalability is another key characteristic of the ONS 15454. With its modular architecture, it accommodates a range of interfaces and line cards, making it easier to tailor deployments to specific customer needs. This modularity not only facilitates upgrades but also simplifies maintenance, minimizing downtime and operational costs.

The platform also features advanced management capabilities through Cisco's Optical Network Management system. This allows for real-time monitoring, provisioning, and troubleshooting, ensuring network reliability and performance. The intuitive interface and comprehensive reporting tools enable operators to gain insights into network operations, improving decision-making processes.

Furthermore, the ONS 15454 is built to support optical layer protection features, enhancing network resilience. Technologies such as Automatic Protection Switching (APS) and Optical Supervisory Channel (OSC) ensure that connectivity is maintained even in the event of a failure, crucial for mission-critical applications.

In conclusion, the Cisco ONS 15454 is a powerful optical networking solution that combines flexibility, scalability, and advanced management features. Its support for various services and technologies positions it as an essential asset for organizations looking to build a future-proof network capable of handling increasing data traffic while maintaining high service standards.