CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

3.20CY7C68013A/14A and CY7C68015A/16A Differences

CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively and are ideal for power sensitive battery applica- tions.

CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide more flexibility when neither IFCLK or CLKOUT are needed in the 56-pin package.

USB developers wanting to convert their FX2 56-pin application to a bus-powered system directly benefit from these additional signals. The two GPIOs give developers the signals they need for the power control circuitry of their bus-powered application without pushing them to a high pincount version of FX2LP.

The CY7C68015A is only available in the 56-pin QFN package

Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Dif- ferences

CY7C68013A/CY7C68014A

CY7C68015A/CY7C68016A

IFCLK

PE0

 

 

CLKOUT

PE1

 

 

4. Pin Assignments

Figure 6 on page 15 identifies all signals for the five package types. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128-pin, 100-pin, and 56-pin packages.

The signals on the left edge of the 56-pin package in Figure 6 on page 15 are common to all versions in the FX2LP family with the noted differences between the CY7C68013A/14A and the CY7C68015A/16A.

Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power on default configuration.

The 100-pin package adds functionality to the 56-pin package by adding these pins:

PORTC or alternate GPIFADR[7:0] address signals

PORTE or alternate GPIFADR[8] address signal and seven additional 8051 signals

Three GPIF Control signals

Four GPIF Ready signals

Nine 8051 signals (two USARTs, three timer inputs, INT4,and INT5#)

BKPT, RD#, WR#.

The 128-pin package adds the 8051 address and data buses plus control signals. Note that two of the required signals, RD# and WR#, are present in the 100-pin version.

In the 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register.

Section 10.5 displays the timing diagram of the read and write strobing function on accessing PORTC.

Document #: 38-08032 Rev. *L

Page 14 of 62

[+] Feedback

Page 14
Image 14
Cypress manual Pin Assignments, 20 CY7C68013A/14A and CY7C68015A/16A Differences, Ifclk PE0, PE1

CY7C68013A specifications

The Cypress CY7C68013A is a high-performance USB microcontroller that belongs to Cypress's FX2LP family, specifically designed for USB applications. This microcontroller is well-regarded for its versatility, making it a popular choice for developers engaged in USB-enabled projects.

One of the main features of the CY7C68013A is its ability to support USB 2.0, with both high-speed (480 Mbps) and full-speed (12 Mbps) operation. This capability allows developers to take full advantage of the USB interface for data transfer, making it suitable for applications that require fast and efficient data communication. The device integrates a USB controller along with an 8051-compatible microcontroller, providing a seamless interface for USB transactions while also allowing for custom processing tasks.

The CY7C68013A offers 32 KB of internal RAM, which is a valuable resource for data buffering and temporary storage during data transfer operations. Additionally, it includes a programmable 8-bit I/O interface, which can be tailored to various application needs, facilitating control over peripheral devices. The microcontroller also features a 16-bit address bus and a 16-bit data bus, enhancing its ability to interface with external memory and components.

In terms of development, moving from concept to production becomes easier due to the availability of development kits and software support. The CY7C68013A is compatible with Cypress's EZ-USB development environment, which includes APIs and libraries that simplify the coding process. This software support empowers developers to create sophisticated USB-related applications without needing extensive background knowledge in USB protocol intricacies.

Regarding power efficiency, the CY7C68013A operates at low power consumption levels, making it suitable for battery-operated devices. It supports various low-power modes, which further enhances its appeal for portable applications.

Overall, the Cypress CY7C68013A stands out for its robust features, flexibility, and ease of use, making it an ideal choice for engineers working on USB-centric designs. Its combination of high-speed USB functionality, ample internal resources, and strong software support positions it as a go-to microcontroller for a wide variety of applications, ranging from consumer electronics to industrial systems.