ISA/PCI Reference

CBI/CGI Technical Reference

 

 

IO16# (I)

I/O 16-bit Chip Select (IO16#) signals the system board that the present data transfer is a 16-bit, 1 wait-state, I/O cycle. It is derived from an address decode. IO16# is active low and should be driven with an open collector or tri-state driver capable of sinking 20 mAmps.

IOCHK# (I)

I/O Channel Check (IOCHK#) provides the system board with parity (error) information about memory or devices on the I/O channel. When this signal is active, it indicates an uncorrectable system error.

IORC# (I/O)

I/O Read (IORC#) instructs an I/O device to drive its data onto the data bus. It may be driven by the system microprocessor or DMA controller, or by a microprocessor or DMA controller resident on the I/O channel. This signal is active low.

IOWC# (I/O)

I/O Write (IOWC#) instructs an I/O device to read the data on the data bus. It may be driven by any microprocessor or DMA controller in the system. This signal is active low.

IRQ[15::14], IRQ[12::9], IRQ[7::3] (I)

Interrupt Requests IRQ[15::14], IRQ[12::9] and IRQ[7::3] are used to signal the microprocessor that an I/O device needs attention. The interrupt requests are prioritized, with IRQ[15::14] and IRQ[12::9] having the highest priority (IRQ9 is the highest) and IRQ[7::3] having the lowest priority (IRQ7 is the lowest). An interrupt request is generated when an IRQ line is raised from low to high. The line must be held high until the microprocessor acknowledges the interrupt request (Interrupt Service routine).

LA[23::17] (I/O)

These signals (unlatched) are used to address memory and I/O devices within the system. They give the system up to 16MB of addressability. These signals are valid when BALE is high. LA[23::17] are not latched during microprocessor cycles and therefore do not stay valid for the whole cycle. Their purpose is to generate memory decodes for 1 wait-state memory cycles. These decodes should be latched by I/O adapters on the falling edge of BALE. These signals also may be driven by other microprocessors or DMA controllers that reside on the I/O channel.

M16# (I)

M16# Chip Select signals the system board if the present data transfer is a 1<N>wait-state, 16- bit, memory cycle. It must be derived from the decode of LA[23::17]. M16# should be driven with an open collector or tri-state driver capable of sinking 20 mAmps.

Master16# (I)

Master16# is used with a DRQ line to gain control of the system. A processor or DMA controller on the I/O channel may issue a DRQ to a DMA channel in cascade mode and receive a DAK#. Upon receiving the DAK#, an I/O microprocessor may pull Master16# low, which will allow it to control the system address, data, and control lines (a condition known as tri-state). After Master16# is low, the I/O microprocessor must wait one system clock period before driving the address and data lines, and two clock periods before issuing a Read or Write command. If this signal is held low for more than 15<N>microseconds, system memory may be lost because of a lack of refresh.

2-4

Chassis Plans

Page 36
Image 36
Intel S5721-xxx manual Iochk#

S5721-xxx specifications

The Intel S5721-xxx is a high-performance processor designed for a variety of applications, particularly in data center environments and enterprise-level solutions. This processor is part of Intel's line of server-grade CPUs, which are engineered to deliver exceptional performance, efficiency, and scalability.

One of the standout features of the Intel S5721-xxx is its multi-core architecture, which allows for enhanced parallel processing capabilities. This is crucial for workloads that require simultaneous processing of multiple tasks, such as virtualization, cloud computing, and large-scale data analytics. With up to 20 physical cores and support for Intel Hyper-Threading technology, the S5721-xxx can handle up to 40 threads, significantly improving throughput and performance for demanding applications.

In terms of performance, the S5721-xxx offers impressive clock speeds that can reach up to 3.2 GHz, providing the necessary power for demanding tasks. Additionally, the processor supports Intel Turbo Boost Technology, which automatically increases the processor's frequency to provide extra performance when needed. This dynamic scaling ensures efficient resource utilization, making the processor an ideal choice for environments where workload requirements can fluctuate.

Another notable characteristic of the S5721-xxx is its advanced memory support. The processor is compatible with DDR4 memory, allowing for high bandwidth and low latency, which is essential for applications that require quick access to large datasets. Additionally, the S5721-xxx supports Intel Optane technology, which enhances memory performance and offers lower latency, providing a considerable advantage in data-intensive operations.

Intel's S5721-xxx also features enhanced security technologies. With Intel Software Guard Extensions (SGX), this processor provides hardware-based protection for applications and data, which is critical for enterprise applications dealing with sensitive information. Furthermore, it includes Intel Virtualization Technology, facilitating improved resource management and security in virtual environments.

Thermal management is also a focus for the S5721-xxx. It incorporates Intel's thermal velocity boost technology, which optimizes thermal performance and ensures that the processor can maintain high speeds without overheating under heavy loads.

In summary, the Intel S5721-xxx is characterized by its robust multi-core architecture, high clock speeds, advanced memory support, and security features. Its design caters specifically to the needs of modern data-driven enterprises and offers the scalability necessary to support emerging technologies and workloads. With its combination of performance, efficiency, and security, the Intel S5721-xxx is a formidable choice for organizations looking to enhance their computing capabilities.