USB Interface

The USB interface allows the instrument to be controlled using RS232 protocol via a computer’s USB port. This is useful where the computer’s standard RS232 COM ports are fully utilised or non-existent.

The instrument is supplied with a disk containing drivers for various versions of Windows, including Win98 and 2000. The disk also contains a text file with information and details of the software installation procedure.

Installation of the interface driver is achieved by connecting the instrument to a PC via a standard USB cable. The Windows’ plug and play functions should automatically recognise the addition of new hardware attached to the USB interface and if this is the first time the connection has been made, prompt for the location of a suitable driver. Provided that the standard Windows prompts are followed correctly Windows will install the appropriate driver and establish a virtual COM port within the PC. The number of the new COM port will depend upon the number of co-existing COM ports within the PC. The virtual COM port can be driven by Windows applications in exactly the same way as a standard port.

Note that it is necessary to set the virtual COM port to the same Baud rate as the instrument being controlled in exactly the same way as with a standard RS232 connection.

The driver will remain installed on the PC so that the establishment of a virtual COM port is done automatically each time the instrument is connected to the PC via USB in the future.

Further virtual COM ports are created for each additional instrument connected to the PC via USB. Each instrument is assigned a separate virtual COM port when it is first connected and the same COM port will be assigned each time that instrument is subsequently connected; the PC software makes use of the unique code embedded in each instrument to link it to the same virtual COM port irrespective of which physical USB port it is connected to.

Use can also be made of the ADDRESS? command to easily identify which instrument is being controlled by a particular COM port. Although the addressing capability is ignored in USB operation the address can still be set and used as an identifier; set each USB-connected instrument to a different address and send the ADDRESS? command from each virtual COM port to confirm which instrument is connected to that port.

The supplied disk contains an uninstall program should this be required.

GPIB Interface

The GPIB interface 24-way connector is located on the instrument rear panel. The pin connections are as specified in IEEE Std. 488.1-1987 and the instrument complies with IEEE Std. 488.1-1987 and IEEE Std. 488.2-1987.

GPIB Subsets

This instrument contains the following IEEE 488.1 subsets:

Source Handshake

SH1

Acceptor Handshake

AH1

Talker

T6

Listener

L4

Service Request

SR1

Remote Local

RL1

Parallel Poll

PP1

Device Clear

DC1

Device Trigger

DT0

Controller

C0

Electrical Interface

E2

31

Page 32
Image 32
Xantrex Technology XDL 35-5TP manual USB Interface, Gpib Interface, Gpib Subsets

XDL 35-5T, XDL 35-5TP specifications

Xantrex Technology has established itself as a leader in the power conversion industry, and their XDL series, specifically the XDL 35-5TP and XDL 35-5T, exemplifies their commitment to innovation and reliability in power management solutions. Designed for a variety of applications, these models offer high performance and efficiency, catering to both professional and recreational users.

The XDL 35-5TP is recognized for its robust design and versatility, suitable for various applications, including battery charging, powering electronic devices, and supporting other power equipment. It features a maximum output of 35 amps and can deliver a continuous power supply sufficient for multiple devices. The integrated temperature monitoring ensures optimal performance and longevity, while the built-in safety features protect against overloads and short circuits.

One of the standout features of the XDL 35-5TP is its advanced microprocessor control, which allows for smart charging profiles. This technology not only increases efficiency but also extends battery life by managing the charging cycle meticulously. Users can take advantage of adjustable charging voltage settings, making the XDL 35-5TP compatible with various battery types, including lead-acid and lithium-ion.

The XDL 35-5T, on the other hand, while sharing many of the core features of the TP model, focuses more on size and weight optimization without compromising power delivery. This makes it an excellent choice for mobile users and those with limited installation space. Both models boast a durable design, suitable for harsh environmental conditions, ensuring reliability whether used in marine, automotive, or off-grid applications.

In terms of connectivity, the XDL series includes multiple output options, allowing users to connect various devices seamlessly. The front-mounted display panel gives real-time feedback on battery status and system performance, enabling informed management of power resources. Additionally, both models are engineered to minimize electromagnetic interference, ensuring operation without disrupting other electronic systems.

Overall, the Xantrex XDL 35-5TP and XDL 35-5T represent cutting-edge solutions in power technology, combining innovative features with practical usability. Their high efficiency, safety protocols, and flexibility in applications make them an excellent choice for users seeking reliable power solutions in diverse settings. Whether for recreational vehicles, boats, or emergency backup, the XDL series stands out as a testament to Xantrex's commitment to quality and performance in power conversion technology.