Cypress CY7C1355C, CY7C1357C manual Bypass Register, TAP Instruction Set

Page 12

CY7C1355C

CY7C1357C

Diagram. Upon power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section.

When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the board-level serial test data path.

Bypass Register

To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (VSS) when the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all the input and bidirectional balls on the SRAM.

The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instructions can be used to capture the contents of the I/O ring.

The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions table.

TAP Instruction Set

Overview

Eight different instructions are possible with the three bit instruction register. All combinations are listed in the Instruction Codes table. Three of these instructions are listed as RESERVED and should not be used. The other five instruc- tions are described in detail below.

Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.

IDCODE

The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state.The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state.

SAMPLE Z

The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP controller is in a Shift-DR state. The SAMPLE Z command puts the output bus into a High-Z state until the next command is given during the “Update IR” state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When the SAMPLE/PRELOAD instructions are loaded into the in- struction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is cap- tured in the boundary scan register.

The user must be aware that the TAP controller clock can only operate at a frequency up to 20 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possi- ble that during the Capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results may not be possible.

To guarantee that the boundary scan register will capture the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller's capture set-up plus hold times (tCS and tCH). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CK and CK# captured in the boundary scan register.

Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the bound- ary scan register between the TDI and TDO pins.

PRELOAD allows an initial data pattern to be placed at the latched parallel outputs of the boundary scan register cells pri- or to the selection of another boundary scan test operation.

The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required—that is, while data captured is shifted out, the preloaded data can be shifted in.

BYPASS

When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board.

EXTEST

The EXTEST instruction enables the preloaded data to be driven out through the system output pins. This instruction also selects the boundary scan register to be connected for serial access between the TDI and TDO in the shift-DR controller state.

Reserved

These instructions are not implemented but are reserved for future use. Do not use these instructions.

Document #: 38-05539 Rev. *E

Page 12 of 28

[+] Feedback

Image 12
Contents Features Functional Description1Selection Guide 133 MHz 100 MHz UnitLogic Block Diagram CY7C1355C 256K x Logic Block Diagram CY7C1357C 512K xPin Configurations Pin Tqfp Pinout CY7C1355CCY7C1357C Pin Configurations Ball BGA Pinout 3 Chip Enables with Jtag Pin Configurations Ball Fbga Pinout 3 Chip enable with Jtag CE2 CLKCE2 Power supply inputs to the core of the device Power supply for the I/O circuitryPin Definitions Name DescriptionSingle Read Accesses Burst Read AccessesSingle Write Accesses Functional OverviewInterleaved Burst Address Table Mode = Floating or VDD Linear Burst Address Table Mode = GNDZZ Mode Electrical Characteristics Sleep Mode Partial Truth Table for Read/Write2, 3Truth Table for Read/Write2, 3,9 Function CY7C1355CTAP Controller Block Diagram TAP Controller State DiagramIeee 1149.1 Serial Boundary Scan Jtag Bypass Register TAP Instruction SetTAP Timing Parameter Description Min Max Unit ClockOutput Times Set-up Times3V TAP AC Test Conditions 5V TAP AC Test Conditions5V TAP AC Output Load Equivalent Identification Register DefinitionsScan Register Sizes Identification CodesRegister Name Bit Size Instruction Code DescriptionCY7C1355C 256K x Bit# Ball ID Signal CY7C1357C 512K x Bit# Ball Id Signal NameBall BGA Boundary Scan Order NameCY7C1355C 256K x Bit# Ball ID Signal Name Ball Fbga Boundary Scan OrderBWD Electrical Characteristics Over the Operating Range13 Maximum RatingsOperating Range Ambient RangeCapacitance15 Thermal Resistance15AC Test Loads and Waveforms 3V I/O Test LoadSwitching Characteristics Over the Operating Range 16 100 Parameter Description Unit Min MaxSwitching Waveforms CommandRead/Write Waveforms22, 23 WriteNOP, Stall and Deselect Cycles22, 23 QA4+1 DA5 QA6 DA7ZZ Mode Timing26 Ordering Information Package Diagrams Pin Thin Plastic Quad Flatpack 14 x 20 x 1.4 mmBall BGA 14 x 22 x 2.4 mm 90±0.05Soldernotespad Type NON-SOLDER Mask Defined Nsmd Issue Date Orig. Description of Change Document History