Lincoln Electric SVM197-A service manual Welding Cast Iron, Cast Iron Plate Preparation

Page 34

Section TOC

Master TOC

B-16

OPERATION

B-16

4. The bead should be put on with a weaving motion,

When breaking

and it should be 1/2-3/4” (12.7-19.0mm) wide. Do

not let the arc blow over the edge, as that will dull

the weld stays on

the edge. (See drawing below.)

 

one piece

Return to

Work Table

Strike Arc

 

Here

Sharp Edge

Brick

 

 

 

Plow Share

 

1/2-3/4" width

 

(12-20mm)

 

 

Positioning of Share

Weaving Motion

To overcome this, the welding operator has two choic- es:

1.Preheat the entire casting to 500-1200°F (260- 649°C) If the cast iron is hot before welding, there will be no sudden chilling which creates brittle white cast iron. The entire casting will cool slowly.

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

5.Use the back-stepping method. Begin to weld 3” (76mm) from the heel of the share and weld to the heel. The second weld will begin 6” (152mm) from the heel, the third weld 9” (229mm) from the heel, etc.

B

A

C

D

E First weld from A to B; then

 

 

3"

 

 

 

 

 

 

from C to A; then from D to C;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

then from E to D; and so on.

(75mm)

 

 

 

 

 

 

 

 

 

BACKSTEPPING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Backstepping greatly reduces the chances for cracking of the share, and it also greatly reduces warping.

NOTE: The entire process is rather fast. Many begin- ners go much too slowly when hardfacing plowshares, running the risk of burning through the thin metal.

Welding Cast Iron

When welding on a piece of cold cast iron, the tremen- dous heat from the arc will be absorbed and distributed rapidly into the cold mass. This heating and sudden cooling creates WHITE, BRITTLE cast iron in the fusion zone. (See drawing below.)

2.Weld 1/2” (12.7mm) at a time, and do not weld at that spot again until the weld is cool.

This way, no large amount of heat is put into the mass.

Most inexperienced welders will probably use the sec- ond method, because they have no way of preheating large castings. Smaller castings can easily (and should) be preheated before welding. A forge, stove, fire, or the Arc Torch are all excellent means of pre- heating.

When using the 1/2” (12.7mm) at a time method, it is recommended to start 1/2” (12.7mm) away from the previous bead and weld into the previous bead. This is called backstepping.

After welding Cast Iron, protect the casting against fast cooling. Put it in a container of warm, dry sand or lime.

If sand or lime is not available, cover it with sheet metal or any other non-flammable material that will diminish drafts and retain heat.

Cast Iron Plate Preparation

TOC

hot

coldcold

White brittle cast iron

Wherever practical, the joint to be welded should be “veed” out by grinding or filing to give complete pene- tration as shown in figures (a), (b) and (c) below. This is especially important on thick castings where maxi- mum strength is required.

Return to Section

Return to Master

This is the reason why welds in cast iron break. Actually, one piece of the broken cast iron has the entire weld on it and the other piece has no weld on it. (See drawing).

POWERARC® 5500

Image 34
Contents Powerarc ISAFETYi Safety Electric Shock can kill ARC Rays can burnFor Electrically IiiPrécautions DE Sûreté Electromagnetic Compatibility EMC Safety Master Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications PowerarcStoring Safety PrecautionsLocation and Ventilation Engine Exhaust can killPRE-OPERATION Engine Service Spark Arrester PowerArc 5500 Typical Fuel ConsumptionMuffler Deflector Honda 9 HPWelding Cable Connections Powerarc 5500 Output ConnectionsElectrical Output Connections Cable Size and LengthPlugs and HAND-HELD Equipment Auxiliary Power ReceptaclesCable Installation Machine GroundingPremises Wiring Circuit BreakersTable A.2 Electrical Device USE with the Powerarc Type Common Electrical Devices Possible ConcernsPowerarc Table of Contents Operation Section Operation Output Panel Controls Controls and SettingsLimitations Physical Location of Components may vary by Code NoEngine Operation Gasoline Engine ControlsBefore Starting the Engine Starting the EngineGeneral Information Generator OperationStopping the Engine Running the EngineTable B.3 Generator Power Applications Welding Operation Control Function / Operation Current Control DialMaterial Thickness Electrode Type Size Setting Welding GuidelinesWhat Happens in the Arc? Welding circuit for Stick shielded metal arc weldingCorrect Arc Length Correct Welding PositionCorrect Way to Strike An Arc Correct Welding SpeedUse the following Common MetalsTypes of Welds Do the followingPenetration Welding in the Vertical PositionVertical-Up Welding Vertical-Down WeldingHardfacing To Reduce Wear How to Hardface the Sharp Edge Metal to Ground WearOverhead Welding Welding Sheet MetalWelding Cast Iron Cast Iron Plate PreparationLow Hydrogen Group AWS E7018 Selecting ElectrodesHigh-Speed Group AWS E6013 Out-of-Position Group AWS E6011Powerarc Table of Contents Accessories Section OPTIONS/ACCESSORIES AccessoriesLincoln Electric Accessories Table of Contents Maintenance Section Routine and Periodic Maintenance MaintenanceEngine Maintenance Engine Adjustments Figure D.3 Clean Rotating SCREEN/FINGER GUARD/DEBRIS GuardTable D.1 Engine Maintenance Parts Part Robin / Subaru HondaGENERATOR/WELDER Maintenance Do not attempt to polish slip rings while engine is runningFigure D.6. Major Component Locations 1TABLE of CONTENTS-THEORY of Operation Section E-1 Engine Control and Ignition Theory of OperationENGINE, EXCITATION, Rotor and Stator Rotor Field Feedback Auxiliary Power ReturnAuxiliary Power Overcurrent Protection Weld Winding and Reactor1TABLE of Contents Troubleshooting and Repair F-1 2TROUBLESHOOTING and REPAIRF-2 HOW to USE Troubleshooting GuideTroubleshooting and Repair Output Problems Perform the Rotor and Flashing Voltage Test Troubleshooting and Repair Troubleshooting and Repair Rotor Resistance Test Engine Problems Troubleshooting and Repair Engine Throttle Adjustment Test Powerarc Test Description Materials NeededFlashing Voltage Test Procedure 14TROUBLESHOOTING and REPAIRF-14Rotor Voltage Test Procedure LeadRotor Resistance Test Procedure Rotor Resistance Test Procedure Figure F.3 Brushes Retained with Cable TIE Powerarc Engine Throttle Adjustment Test ROBIN/SUBARU Engine Engine Throttle Adjustment Test ROBIN/SUBARU EngineHigh Speed Stop Screw Normal Open Circuit Weld Voltage Waveform Scope SettingsHigh Idle no Load Normal Open Circuit Voltage Waveform 115 VAC Supply Machine Loaded Typical Weld Output WaveformMachine Loaded to 125 Amps AT 23 VAC Brush Removal and Replacement Procedure Brush Removal and Replacement Procedure Powerarc Rheostat Removal and Replacement Procedure Rheostat Removal and Replacement Procedure Troubleshooting and Repair Attachment for 202A Cable Tie Capacitor Procedure Capacitor Removal and REPLACE- MentCapacitor AND/OR Diode Bridge Attachment for 201 201A JumperProcedure Field Diode Bridge Removal and Replacement Figure F.10 Field Diode Bridge LocationPowerarc STATOR/ROTOR Removal and Replacement Procedure Stator Removal Procedure STATOR/ROTORSection TOC Rotor Removal Procedure Procedure Reactor Bolts Lead Engine Output Auxiliary Power Receptacle OUTPUT1Retest After Repair WELDER/GENERATOR OUTPUT1Powerarc Table of Contents Diagram Section Electrical Diagrams Wiring Diagram Codes 11182, 11187, 11329 S25984Wiring Diagram Codes 11403, 11405 S26829 SwitchWiring Diagram Power ARC Wiring Diagram Code 11404 S26830Wiring Diagram Code 11215 S26023 Schematic -CODES 11182, 11187, 11329 S26008 S26008Schematic Codes 11403, 11405 S26881 S26881Schematic Code 11404 S26882 S26882