Lincoln Electric SVM197-A service manual Troubleshooting and Repair

Page 51

TOC

F-3

TROUBLESHOOTING AND REPAIR

F-3

 

PC BOARD TROUBLESHOOTING PROCEDURES

 

Return to Section

Return to Section TOC

Return to Master

Return to Master TOC

WARNING

ELECTRIC SHOCK can kill.

Have an electrician install and service this equipment. Turn the input power OFF at the fuse box before working on equipment. Do not touch electrically hot parts.

CAUTION

Sometimes machine failures appear to be due to PC board failures. These problems can sometimes be traced to poor electrical connections. To avoid prob- lems when troubleshooting and replacing PC boards, please use the following procedure:

1.Determine to the best of your technical ability that the PC board is the most likely component causing the failure symptom.

2.Check for loose connections at the PC board to assure that the PC board is properly connected.

3.If the problem persists, replace the suspect PC board using standard practices to avoid static electrical damage and electrical shock. Read the warning inside the static resistant bag and perform the following procedures:

-Remove the PC board from the static-shielding bag and place it directly into the equipment. Don’t set the PC board on or near paper, plastic or cloth which could have a static charge. If the PC board can’t be installed immediately, put it back in the static-shield- ing bag.

-If the PC board uses protective shorting jumpers, don’t remove them until installation is complete.

-If you return a PC board to The Lincoln Electric Company for credit, it must be in the static-shielding bag. This will prevent further damage and allow prop- er failure analysis.

4.Test the machine to determine if the failure symptom has been corrected by the replacement PC board.

NOTE: It is desirable to have a spare (known good) PC board available for PC board troubleshooting.

NOTE: Allow the machine to heat up so that all electrical components can reach their operating temperature.

5.Remove the replacement PC board and substitute it with the original PC board to recreate the original problem.

a.If the original problem does not reappear by substituting the original board, then the PC board was not the problem. Continue to look for bad connections in the control wiring harness, junction blocks, and terminal strips.

TOC

PC board can be damaged by static electricity.

b. If the original problem is recreated by the

Return to Section

Return to Master

ATTENTION

Static-Sensitive

Devices

Handle only at

Static-Safe

Workstations

-Remove your body’s static charge before opening the static- shielding bag. Wear an anti-static wrist strap. For safety, use a 1 Meg ohm resistive cord connected to a grounded part of the equipment frame.

-If you don’t have a wrist strap, touch an un-painted, grounded, part of the equipment frame. Keep touching the frame to prevent static build-up. Be sure not to touch any electrically live parts at the same time.

substitution of the original board, then the PC board was the problem. Reinstall the replacement PC board and test the machine.

6.Always indicate that this procedure was followed when warranty reports are to be submitted.

NOTE: Following this procedure and writing on the warranty report, “INSTALLED AND SWITCHED PC BOARDS TO VERIFY PROBLEM,” will help avoid denial of legitimate PC board warranty claims.

Return to Section TOC

Return to Master TOC

-Tools which come in contact with the PC board must be either conductive, anti-static or static-dissipative.

POWERARC® 5500

Image 51
Contents Powerarc ISAFETYi Electric Shock can kill ARC Rays can burn SafetyIii For ElectricallyPrécautions DE Sûreté Electromagnetic Compatibility EMC Safety Master Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications Powerarc InstallationEngine Exhaust can kill Safety PrecautionsLocation and Ventilation StoringPRE-OPERATION Engine Service Honda 9 HP PowerArc 5500 Typical Fuel ConsumptionMuffler Deflector Spark ArresterCable Size and Length Powerarc 5500 Output ConnectionsElectrical Output Connections Welding Cable ConnectionsMachine Grounding Auxiliary Power ReceptaclesCable Installation Plugs and HAND-HELD EquipmentCircuit Breakers Premises WiringType Common Electrical Devices Possible Concerns Table A.2 Electrical Device USE with the PowerarcPowerarc Table of Contents Operation Section Operation Physical Location of Components may vary by Code No Controls and SettingsLimitations Output Panel ControlsGasoline Engine Controls Engine OperationStarting the Engine Before Starting the EngineRunning the Engine Generator OperationStopping the Engine General InformationTable B.3 Generator Power Applications Control Function / Operation Current Control Dial Welding OperationWelding Guidelines Material Thickness Electrode Type Size SettingWelding circuit for Stick shielded metal arc welding What Happens in the Arc?Correct Welding Speed Correct Welding PositionCorrect Way to Strike An Arc Correct Arc LengthDo the following Common MetalsTypes of Welds Use the followingWelding in the Vertical Position PenetrationVertical-Down Welding Vertical-Up WeldingWelding Sheet Metal How to Hardface the Sharp Edge Metal to Ground WearOverhead Welding Hardfacing To Reduce WearCast Iron Plate Preparation Welding Cast IronOut-of-Position Group AWS E6011 Selecting ElectrodesHigh-Speed Group AWS E6013 Low Hydrogen Group AWS E7018Powerarc Table of Contents Accessories Section Accessories OPTIONS/ACCESSORIESLincoln Electric Accessories Table of Contents Maintenance Section Maintenance Routine and Periodic MaintenanceEngine Maintenance Figure D.3 Clean Rotating SCREEN/FINGER GUARD/DEBRIS Guard Engine AdjustmentsPart Robin / Subaru Honda Table D.1 Engine Maintenance PartsDo not attempt to polish slip rings while engine is running GENERATOR/WELDER MaintenanceFigure D.6. Major Component Locations 1TABLE of CONTENTS-THEORY of Operation Section E-1 Theory of Operation Engine Control and IgnitionENGINE, EXCITATION, Rotor and Stator Return Rotor Field Feedback Auxiliary PowerWeld Winding and Reactor Auxiliary Power Overcurrent Protection1TABLE of Contents Troubleshooting and Repair F-1 HOW to USE Troubleshooting Guide 2TROUBLESHOOTING and REPAIRF-2Troubleshooting and Repair Output Problems Perform the Rotor and Flashing Voltage Test Troubleshooting and Repair Troubleshooting and Repair Rotor Resistance Test Engine Problems Troubleshooting and Repair Engine Throttle Adjustment Test Powerarc Materials Needed Test DescriptionLead 14TROUBLESHOOTING and REPAIRF-14Rotor Voltage Test Procedure Flashing Voltage Test ProcedureRotor Resistance Test Procedure Rotor Resistance Test Procedure Figure F.3 Brushes Retained with Cable TIE Powerarc Engine Throttle Adjustment Test ROBIN/SUBARU Engine ROBIN/SUBARU Engine Engine Throttle Adjustment TestHigh Speed Stop Screw Scope Settings Normal Open Circuit Weld Voltage WaveformHigh Idle no Load Normal Open Circuit Voltage Waveform 115 VAC Supply Typical Weld Output Waveform Machine LoadedMachine Loaded to 125 Amps AT 23 VAC Brush Removal and Replacement Procedure Brush Removal and Replacement Procedure Powerarc Rheostat Removal and Replacement Procedure Rheostat Removal and Replacement Procedure Troubleshooting and Repair Attachment for 201 201A Jumper Procedure Capacitor Removal and REPLACE- MentCapacitor AND/OR Diode Bridge Attachment for 202A Cable Tie CapacitorFigure F.10 Field Diode Bridge Location Procedure Field Diode Bridge Removal and ReplacementPowerarc STATOR/ROTOR Removal and Replacement Procedure STATOR/ROTOR Stator Removal ProcedureSection TOC Rotor Removal Procedure Procedure Reactor Bolts Lead WELDER/GENERATOR OUTPUT1 Auxiliary Power Receptacle OUTPUT1Retest After Repair Engine OutputPowerarc Table of Contents Diagram Section Wiring Diagram Codes 11182, 11187, 11329 S25984 Electrical DiagramsSwitch Wiring Diagram Codes 11403, 11405 S26829Wiring Diagram Code 11404 S26830 Wiring Diagram Power ARCWiring Diagram Code 11215 S26023 S26008 Schematic -CODES 11182, 11187, 11329 S26008S26881 Schematic Codes 11403, 11405 S26881S26882 Schematic Code 11404 S26882