Programming the DC Source - 3

Making Measurements

The dc source has the ability to make several types of voltage or current measurements. The measurement capabilities of the Agilent 66312A and Agilent 66332A models are particulary useful for loads that draw current in pulses.

NOTE: You cannot measure output voltage and current simultaneously.

All measurements are performed by digitizing the instantaneous output voltage or current for a defined number of samples and sample interval, storing the results in a buffer, and then calculating the measured result. Many parameters of the measurement are programmable. These include the number of samples, the time interval between samples, the bandwidth, and the method of triggering. Note that there is a tradeoff between these parameters and the speed, accuracy, and stability of the measurement in the presence of noise.

There are two ways to make measurements:

Use the MEASure commands to immediately start acquiring new voltage or current data, and return measurement calculations from this data as soon as the buffer is full. This is the easiest way to make measurements, since it requires no explicit trigger programming.

Use an acquisition trigger to acquire the data. Then use the FETCh commands to return calculations from the data that was retrieved by the acquisition trigger. This method gives you the flexibility to synchronize the data acquisition with a transition in the output voltage or current. FETCh commands do not trigger the acquisition of new measurement data, but they can be used to return many different calculations from the data that was retrieved by the acquisition trigger. Note that if you take a voltage measurement, you can fetch only voltage data.

Making triggered measurements with the acquisition trigger system is discussed under "Triggering Measurements".

NOTE: For each MEASure form of the query, there is a corresponding query that begins with the header FETCh. FETCh queries perform the same calculation as their MEASure counterparts, but do not cause new data to be acquired. Data acquired by an explicit trigger or a previously programmed MEASure command are used.

Voltage and Current Measurements

The SCPI language provides a number of MEASure and FETCh queries which return various measurement parameters of voltage and current waveforms.

DC Measurements

To measure the dc output voltage or current, use:

MEASure:VOLTage? or

MEASure:CURRent?

Dc voltage and current is measured by acquiring a number of readings at the selected time interval, applying a Hanning window function to the readings, and averaging the readings. Windowing is a signal conditioning process that reduces the error in dc measurements made in the presence of periodic signals such as line ripple. At power-on and after a *RST command, the following parameters are set:

SENSe:SWEep:TINTerval 15.6E-6

SENSe:SWEep:POINts 2048

23

Page 23
Image 23
Agilent Technologies 6632B, 6634B, 66332A, 6633B manual Making Measurements, Voltage and Current Measurements, DC Measurements

6613C, 66312A, 6631B, 6611C, 6614C specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.