Agilent Technologies 8156A Preserving Connectors, Making Connections, Dust Caps and Shutter Caps

Models: 8156A

1 289
Download 289 pages 37.75 Kb
Page 256
Image 256

Cleaning Information

Preserving Connectors

E.4 Preserving Connectors

Listed below are some hints on how best to keep your connectors in the best possible condition.

Making Connections

Before you make any connection you must ensure that all cables and connectors are clean. If they are dirty, use the appropriate cleaning procedure.

When inserting the ferrule of a patchcord into a connector or an adapter, make sure that the fiber end does not touch the outside of the mating connector or adapter. Otherwise you will rub the fiber end against an unsuitable surface, producing scratches and dirt deposits on the surface of your fiber.

Dust Caps and Shutter Caps

Be careful when replacing dust caps after use. Do not press the bottom of the cap onto the fiber as any dust in the cap can scratch or dirty your fiber surface.

When you have finished cleaning, put the dust cap back on, or close the shutter cap if the equipment is not going to be used immediately.

Keep the caps on the equipment always when it is not in use.

All of Agilent Technologies’ lightwave instruments and accessories are shipped with either laser shutter caps or dust caps. If you need additional or replacement dust caps, contact your nearest Agilent Technologies Sales/Service Office.

Immersion Oil and Other Index Matching

Compounds

Where it is possible, do not use immersion oil or other index matching compounds with your device. They are liable to impair

256

Page 256
Image 256
Agilent Technologies 8156A manual Preserving Connectors, Making Connections, Dust Caps and Shutter Caps

8156A specifications

Agilent Technologies 8156A is a high-performance optical source offering advanced capabilities for testing and characterizing optical systems. Specifically designed for applications in telecommunications and data communications, the 8156A stands out due to its precision, versatility, and reliability, making it an essential tool for engineers and researchers in the telecommunications industry.

One of the main features of the 8156A is its ability to generate a stable, accurate, and tunable optical signal. This optical source operates across a wide wavelength range, typically from 1260 nm to 1675 nm, covering key regions used in fiber optics. The tunable laser module is particularly beneficial for applications requiring the testing of fiber optic components, systems, and networks, enabling users to specify any wavelength within this range.

The device employs advanced technologies, including distributed feedback (DFB) laser technology, offering low noise and high output power while ensuring minimal phase and frequency jitter. This results in precise measurements that are crucial for evaluating the performance of optical devices. The 8156A also features a built-in optical power meter, allowing for seamless integration and real-time monitoring of optical power levels during testing.

Another significant characteristic of the 8156A is its user-friendly interface, which includes easy-to-read displays and intuitive controls. This design simplifies operation, allowing users to set up tests quickly and efficiently. Additionally, it provides various output options, including single-mode and multi-mode fiber interface compatibility, expanding its usability across different applications.

The 8156A is equipped to handle numerous protocols and systems, including passive optical networks (PON), optical transport networks (OTN), and traditional wavelength-division multiplexing (WDM) technologies. Its agility in adapting to various protocols enhances its role in research and development settings.

Moreover, the device offers a range of automation features, enabling users to script complex measurement sequences, making it an adaptable solution for both laboratory and field environments. Combined with its robust build quality, the Agilent Technologies 8156A optical source not only ensures reliable operation but also provides a long service life, making it a valuable investment for any optical testing application.