Cleaning Information

Additional Cleaning Information

How to clean bare fiber ends

How to clean large area lenses and mirrors

How to clean bare fiber ends

Bare fiber ends are often used for splices or, together with other optical components, to create a parallel beam. The end of a fiber can often be scratched. You make a new cleave. To do this:

1.Strip off the cladding.

2.Take a new soft-tissue and moisten it with isopropyl alcohol.

3.Carefully clean the bare fiber with this tissue.

4.Make your cleave and immediately insert the fiber into your bare fiber adapter in order to protect the surface from dirt.

How to clean large area lenses and mirrors

Some mirrors, as those from a monochromator, are very soft and sensitive. Therefore, never touch them and do not use cleaning tools such as compressed air or polymer film.

Some lenses have special coatings that are sensitive to solvents, grease, liquid and mechanical abrasion. Take extra care when cleaning lenses with these coatings.

Lens assemblies consisting of several lenses are not normally sealed. Therefore, use as little liquid as possible, as it can get between the lenses and in doing so can change the properties of projection.

Preferred Procedure

Use the following procedure on most occasions.

269

Page 269
Image 269
Agilent Technologies 8156A manual How to clean bare fiber ends, How to clean large area lenses and mirrors

8156A specifications

Agilent Technologies 8156A is a high-performance optical source offering advanced capabilities for testing and characterizing optical systems. Specifically designed for applications in telecommunications and data communications, the 8156A stands out due to its precision, versatility, and reliability, making it an essential tool for engineers and researchers in the telecommunications industry.

One of the main features of the 8156A is its ability to generate a stable, accurate, and tunable optical signal. This optical source operates across a wide wavelength range, typically from 1260 nm to 1675 nm, covering key regions used in fiber optics. The tunable laser module is particularly beneficial for applications requiring the testing of fiber optic components, systems, and networks, enabling users to specify any wavelength within this range.

The device employs advanced technologies, including distributed feedback (DFB) laser technology, offering low noise and high output power while ensuring minimal phase and frequency jitter. This results in precise measurements that are crucial for evaluating the performance of optical devices. The 8156A also features a built-in optical power meter, allowing for seamless integration and real-time monitoring of optical power levels during testing.

Another significant characteristic of the 8156A is its user-friendly interface, which includes easy-to-read displays and intuitive controls. This design simplifies operation, allowing users to set up tests quickly and efficiently. Additionally, it provides various output options, including single-mode and multi-mode fiber interface compatibility, expanding its usability across different applications.

The 8156A is equipped to handle numerous protocols and systems, including passive optical networks (PON), optical transport networks (OTN), and traditional wavelength-division multiplexing (WDM) technologies. Its agility in adapting to various protocols enhances its role in research and development settings.

Moreover, the device offers a range of automation features, enabling users to script complex measurement sequences, making it an adaptable solution for both laboratory and field environments. Combined with its robust build quality, the Agilent Technologies 8156A optical source not only ensures reliable operation but also provides a long service life, making it a valuable investment for any optical testing application.