minutes specifies that apcupsd should prohibit logins when the re- maining runtime in minutes reaches 110% or less than the value specified on the MINUTES configuration directive. Thus if MINUTES is set to 3, apcupsd will prohibit logins when the remaining runtime is less than 3 minutes (3 X 110% = 3).

always causes apcupsd to immediately prohibit logins when a power failure occurs. This will also enable the ANNOY feature.

BATTERYLEVEL <percent of battery> If BATTERYLEVEL is specified, during a power failure, apcupsd will halt the system when the remaining battery charge falls below the specified percent- age. The default is 5 percent. This directive is ignored for dumb (voltage-signalling) UPSes. To totally disable this counter, set BAT- TERYLEVEL -1in your apcupsd.conf file.

MINUTES <battery runtime in minutes> If MINUTES is specified, during a power failure, apcupsd will shutdown the system when the remaining runtime on batteries as internally calculated by the UPS falls below the time specified. The default is 3. This directive is ignored for dumb (voltage-signalling) UPSes. It should be noted that some UPSes report an incorrect value for remaining runtime when the battery is fully charged. This can be checked by examining the TIMELEFT value as printed in the output of an apcaccess status command. If the value is zero or otherwise unreasonable, your UPS is probably broken. In this case, we recommend that you disable this timer by setting MINUTES -1in your apcupsd.conf file.

TIMEOUT <time in seconds> After a power failure, apcupsd will halt the system when TIMEOUT seconds have expired. A value of zero disables this timer. Normally for all Smart UPS models and dumb UPSes with cables that support low battery detection, this should be zero so that the shutdown time will be determined by the battery level and/or remaining runtime (see above) or in the case of a voltage- signalling UPS, when the battery is exhausted. This command is re- quired for dumb UPSes that do not provide a battery exhausted signal (only testing can determine this point). For more information, see the Testing (see

Testing Apcupsd) section of this manual. This timer can also be useful if you want some slave machines to shutdown before other machines to conserve battery power. It is also useful for testing apcupsd because you can force a rapid shutdown by setting a small value (e.g. 60) and pulling the plug to the UPS.

When apcupsd is running in master mode (UPSCLASS netmaster), and a shutdown condition is determined, apcupsd will notify each of

168

Page 169
Image 169
APC UPS control system manual

UPS control system specifications

APC UPS (Uninterruptible Power Supply) control systems are vital components for ensuring uninterrupted power supply and protecting critical equipment from power interruptions, surges, or fluctuations. Designed by Schneider Electric, APC UPS systems are renowned for their high quality and reliability. They utilize advanced technologies and features to suit diverse applications, from home offices to large industrial settings.

One of the main features of APC UPS systems is the ability to provide backup power during outages. This is achieved through a battery system that activates immediately when the mains power fails. This seamless transition minimizes downtime and ensures that electronic devices continue to operate, protecting data integrity and equipment lifespan.

Another significant characteristic of APC UPS systems is their intelligent management capabilities. Most models come with PowerChute software, which provides users with real-time monitoring of power conditions and the status of the UPS. This software allows for graceful shutdowns of connected devices during extended outages, thereby preventing data loss and damage to devices.

APC UPS systems also incorporate advanced technologies such as Automatic Voltage Regulation (AVR). AVR technology ensures that the output voltage remains stable by correcting minor fluctuations without switching to battery mode. This not only prolongs the battery life but also provides a consistent power supply to the connected equipment.

Thermal management is another critical aspect of APC UPS control systems. The design often includes efficient cooling systems that prevent overheating, ensuring optimal performance and longevity of the unit. Some models feature EcoMode, which reduces energy consumption and lowers operational costs by working at high efficiency only when battery backup is not required.

APC UPS systems are designed with scalability in mind. Users can easily add more batteries or connect additional UPS units to accommodate growing power needs. Features such as hot-swappable batteries and modular design facilitate easy upgrades and servicing without interrupting power supply.

In terms of connectivity, APC UPS products often feature multiple options including USB, RS-232, and network management capabilities. This enables users to connect remote management tools and integrate the UPS with existing IT infrastructure.

In summary, APC UPS control systems deliver reliability, efficiency, and advanced technology features that cater to a wide array of power protection needs, making them a trusted choice for individuals and businesses alike.