Chapter 3 Configuring the Cisco ATA for MGCP

Configuring the Cisco ATA Using a TFTP Server

Step 4 Use the mgcp_example.txt file again, this time as a template for creating a text file of values that are specific to one Cisco ATA. For example, you might configure the following parameters:

UserID:8530709

GkorProxy:192.168.1.1

Save this file of Cisco ATA-specific parameters as:

ata<macaddress>.txt

where macaddress is the non-dotted hexadecimal version of the MAC address of the Cisco ATA you are configuring. This non-dotted hexadecimal MAC address is labeled on the bottom of most Cisco ATAs next to the word “MAC.” The file name must be exactly 15 characters long. (However, if this filename is supplied by the DHCP server, the name can be as long as 31 characters and can be any name with printable ASCII characters.)

If necessary, you can obtain the non-dotted hexadecimal MAC address by using the atapname.exe command. For information on using the atapname.exe command, see the “Using atapname.exe Tool to Obtain MAC Address” section on page 3-11. That section includes an example of a dotted decimal MAC address and its corresponding non-dotted hexadecimal address.

Note The ata<macaddress>.txt file should contain only those parameters whose values are different from the file of common parameters. Parameter values in the ata<macaddress> configuration file will overwrite any manually configured values (values configured through the web or voice configuration menu) when the Cisco ATA powers up or refreshes.

Step 5 On the top line of the ata<macaddress>.txt file, add an include command to include the name of the common-parameters file, and save the file.

include:common.txt

UserID:8530709

GkorProxy:192.168.1.1

Step 6 Run the cfgfmt.exe tool, which is bundled with the Cisco ATA software, on the ata<macaddress>.txt text file to generate the binary configuration file. If you wish to encrypt the binary file, see the “Using Encryption With the cfgfmt Tool” section on page 3-12.

The syntax of the cfgfmt program follows:

Syntax

cfgfmt [Encryption options] -mgcp -tptag.dat input-text-file output-binary-file

Encryption options are described in the “Using Encryption With the cfgfmt Tool” section on page 3-12.

mgcp (for MGCP) is the protocol you are using, which you must specify so that the cfgfmt tool will include only the applicable protocol in the converted output binary file.

The ptag.dat file, provided with the Cisco ATA software version you are running, is used by cfgfmt.exe to format a text input representation of the parameter/value pairs to its output binary representation. Be sure this file resides in the same directory from which you are running the cfgfmt program.

input-text-fileis the input text file representation of the Cisco ATA configuration file.

output-binary-fileis the final output binary file that Cisco ATA uses as the TFTP configuration file.

Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator’s Guide for MGCP (version 3.0)

3-10

OL-4803-01

 

 

Page 44
Image 44
Cisco Systems ATA 186, ATA 188 manual Save this file of Cisco ATA-specific parameters as, Syntax

ATA 188, ATA 186 specifications

The Cisco Systems ATA 186, or Analog Telephone Adapter, revolutionized the way traditional telephony interacted with Voice over Internet Protocol (VoIP) systems. Designed primarily for home and small office use, the ATA 186 allows users to connect standard analog phones and fax machines to a network, enabling them to take advantage of the benefits of VoIP technology.

One of the defining features of the ATA 186 is its dual port architecture. It includes two FXS ports, allowing users to connect up to two analog telephones. This functionality means that multiple devices can leverage VoIP services simultaneously without the need for separate adapters for each phone. The flexibility of the ATA 186 helps streamline the user experience, facilitating voice communication over an IP network while ensuring users can still use their existing phone equipment.

The ATA 186 employs various technologies to maintain high-quality voice calls. It supports standard voice codecs such as G.711 and G.729, which ensure efficient bandwidth usage while preserving call clarity. The adaptive jitter buffer technology further enhances call quality, compensating for network variations and minimizing latency, which is crucial for clear and uninterrupted conversations.

Additionally, the ATA 186 provides users with advanced calling features that were traditionally available only on PBX systems. These features include caller ID, call waiting, and voicemail functionality, integrating seamlessly with typical telephony services. The device also supports T.38 fax relay, allowing users to send and receive faxes over the internet, thus addressing the needs of environments where fax communication remains essential.

The security of VoIP conversations is also a priority for the ATA 186. It employs encryption protocols such as Secure Real-time Transport Protocol (SRTP) and Transport Layer Security (TLS), ensuring that voice data is securely transmitted across the network. This focus on security helps protect sensitive information transmitted during calls.

Installation and configuration of the ATA 186 is streamlined, with an intuitive web-based interface that simplifies the setup process. This accessibility makes it suitable for users with varying levels of technical expertise, as frequently required adjustments, such as network configurations and firmware updates, can be easily managed.

In conclusion, the Cisco Systems ATA 186 stands out as a versatile and robust solution for users looking to integrate analog phones into a VoIP environment. With its dual port capabilities, high-quality voice codecs, advanced call features, and security measures, it offers a compelling choice for both residential and commercial users seeking seamless telephony integration. As technology evolves, devices like the ATA 186 remain cornerstones in bridging traditional telephony with modern communication systems.