Chapter 3 Configuring the Cisco ATA for MGCP

Configuring the Cisco ATA Using a TFTP Server

Example 2

In this example, a new Cisco ATA has already b een deployed (with the EncryptKey value set) with a firmware version earlier than 2.16.2. The Cisco ATA needs to be upgraded to version 2.16.2 firmware or greater to use EncryptKeyEx parameter to encrypt its configuration file.

In this scenario, you would follow the same procedure as in Example 1, except that you would need to set the EncryptKey value to the previously configured EncryptKey value. The difference is that the ata<macaddress> file is now encrypted with EncryptKey because the Cisco ATA expects the ata<macaddress> file to be encrypted with EncryptKey.The Cisco ATA can then begin using the ata<macaddress>.x file that is encrypted with the EncryptKeyEx parameter.

atadefault.cfg Configuration File

You can create a configuration file, called atadefault.cfg, that is common to all Cisco ATAs. This configuration file is applied to a Cisco ATA only if a unique configuration file (such as ata<macaddress>) does not exist for the Cisco ATA on the TFTP server during the Cisco ATA power-up procedure.

You can use the atadefault.cfg file to provide limited functionality for when you first install the

Cisco ATA. For example, if your service provider provides the ethernet connection and VoIP telephony service, you may need to call customer service to activate the service. If the atadefault.cfg file is configured to provide a direct connection to the customer service center, you can simply pick up the telephone and wait to be connected without using your regular phone.

The following procedure illustrates how to create the Cisco ATA default configuration file, convert it to the required binary format that the Cisco ATA can read, and store it on the TFTP server so that the Cisco ATA will download it during the boot-up process:

Procedure

Step 1 Make a copy of the mgcp_example.txt file and rename it atadefault.txt.

Step 2 Make the desired configuration changes by editing the atadefault.txt file, then save the file.

Step 3 Convert the atadefault.txt file to a binary file by running the cfgfmt.exe tool, which is bundled with the Cisco ATA software.

Note If you wish to encrypt the binary file for security reasons, see the “Using Encryption With the cfgfmt Tool” section on page 3-12. If you encrypt the file using the EncryptKeyEx parameter, the resulting binary file will be called atadefault.cfg.x; if not encrypted with the EncryptKeyEx parameter the resulting binary file name will be atadefault.cfg.

Step 4 Store the binary atadefault.cfg (or atadefault.cfg.x) configuration file in the TFTP server root directory.

During the boot-up process, the Cisco ATA will download this file as its configuration file unless it first finds a Cisco ATA-specific configuration file named for the MAC address of the Cisco ATA.

Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator’s Guide for MGCP (version 3.0)

 

OL-4803-01

3-17

 

 

 

Page 51
Image 51
Cisco Systems ATA 188, ATA 186 manual Atadefault.cfg Configuration File

ATA 188, ATA 186 specifications

The Cisco Systems ATA 186, or Analog Telephone Adapter, revolutionized the way traditional telephony interacted with Voice over Internet Protocol (VoIP) systems. Designed primarily for home and small office use, the ATA 186 allows users to connect standard analog phones and fax machines to a network, enabling them to take advantage of the benefits of VoIP technology.

One of the defining features of the ATA 186 is its dual port architecture. It includes two FXS ports, allowing users to connect up to two analog telephones. This functionality means that multiple devices can leverage VoIP services simultaneously without the need for separate adapters for each phone. The flexibility of the ATA 186 helps streamline the user experience, facilitating voice communication over an IP network while ensuring users can still use their existing phone equipment.

The ATA 186 employs various technologies to maintain high-quality voice calls. It supports standard voice codecs such as G.711 and G.729, which ensure efficient bandwidth usage while preserving call clarity. The adaptive jitter buffer technology further enhances call quality, compensating for network variations and minimizing latency, which is crucial for clear and uninterrupted conversations.

Additionally, the ATA 186 provides users with advanced calling features that were traditionally available only on PBX systems. These features include caller ID, call waiting, and voicemail functionality, integrating seamlessly with typical telephony services. The device also supports T.38 fax relay, allowing users to send and receive faxes over the internet, thus addressing the needs of environments where fax communication remains essential.

The security of VoIP conversations is also a priority for the ATA 186. It employs encryption protocols such as Secure Real-time Transport Protocol (SRTP) and Transport Layer Security (TLS), ensuring that voice data is securely transmitted across the network. This focus on security helps protect sensitive information transmitted during calls.

Installation and configuration of the ATA 186 is streamlined, with an intuitive web-based interface that simplifies the setup process. This accessibility makes it suitable for users with varying levels of technical expertise, as frequently required adjustments, such as network configurations and firmware updates, can be easily managed.

In conclusion, the Cisco Systems ATA 186 stands out as a versatile and robust solution for users looking to integrate analog phones into a VoIP environment. With its dual port capabilities, high-quality voice codecs, advanced call features, and security measures, it offers a compelling choice for both residential and commercial users seeking seamless telephony integration. As technology evolves, devices like the ATA 186 remain cornerstones in bridging traditional telephony with modern communication systems.