Chapter 3 Configuring the Cisco ATA for MGCP

Configuring the Cisco ATA Using a TFTP Server

Step 3 Set the value of the EncryptKeyEx parameter to the chosen encryption key with which you want the output binary file to be encrypted. In the EncryptKeyEx parameter specified in the configuration file, you can also restrict the EncryptKeyEx value to apply only to the Cisco ATA with a particular MAC address. For example, if the chosen key value is 231e2a7f10bd7fe, you can specify EncryptKeyEx as:

EncryptKeyEx:231e2a7f10bd7fe/102030405060

This means that only the Cisco ATA with the MAC address 102030405060 will be allowed to apply this EncryptKeyEx value to its internal configuration.

Step 4 Update the upgradecode parameter to instruct the Cisco ATA to upgrade to firmware version 3.0 by means of TFTP configuration. The upgradecode parameter is described in Chapter 7, “Upgrading the Cisco ATA Signaling Image.”

Step 5 Run the cfgfmt tool as follows:

cfgfmt -g ata102030405060.txt ata102030405060

This will generate the following two binary configuration files:

ata102030405060

ata102030405060.x

ata102030405060 is unencrypted.

ata102030405060.x is encrypted with EncryptKeyEx value.

Step 6 Place these two files on the TFTP server that the Cisco ATA will contact for its configuration files.

When the Cisco ATA powers up, it will obtain its IP address from the DHCP server. If the DHCP server specifies the TFTP server address, the Cisco ATA will contact the TFTP server obtained from DHCP because the Cisco ATA is not preconfigured with a TFTP server address. The boot process is as follows:

a.The Cisco ATA downloads the configuration file ata102030405060 from the TFTP server.

b.The Cisco ATA applies parameter values in the file ata102030405060 to its internal configuration while ignoring the EncryptKeyEx parameter (because the older version of the Cisco ATA does not yet recognize the EncryptKeyEx parameter).

c.The Cisco ATA upgrades to the 3.0 firmware load.

d.The Cisco ATA reboots.

e.The Cisco ATA again downloads the configuration file ata102030405060.

f.The Cisco ATA applies the value of the EncryptKeyEx parameter to its internal configuration.

g.The Cisco ATA reboots.

h.The Cisco ATA EncryptKeyEx value is in effect, so from this point forward the Cisco ATA will download the ata102030405060.x file at each reboot and each time the value configured in the CfgInterval parameter expires.

Note Although EncryptKeyEx is encrypted in the ata<macaddress> file, and the ata<macaddress> file does not contain other sensitive information, Cisco recommends that for absolute security you pre-configure the Cisco ATA as described in this example for a private network. Alternatively, you should remove ata<macaddress> once EncryptKeyEx takes effect.

Cisco ATA 186 and Cisco ATA 188 Analog Telephone Adaptor Administrator’s Guide for MGCP (version 3.0)

3-16

OL-4803-01

 

 

Page 50
Image 50
Cisco Systems ATA 186, ATA 188 manual Ata102030405060 is unencrypted

ATA 188, ATA 186 specifications

The Cisco Systems ATA 186, or Analog Telephone Adapter, revolutionized the way traditional telephony interacted with Voice over Internet Protocol (VoIP) systems. Designed primarily for home and small office use, the ATA 186 allows users to connect standard analog phones and fax machines to a network, enabling them to take advantage of the benefits of VoIP technology.

One of the defining features of the ATA 186 is its dual port architecture. It includes two FXS ports, allowing users to connect up to two analog telephones. This functionality means that multiple devices can leverage VoIP services simultaneously without the need for separate adapters for each phone. The flexibility of the ATA 186 helps streamline the user experience, facilitating voice communication over an IP network while ensuring users can still use their existing phone equipment.

The ATA 186 employs various technologies to maintain high-quality voice calls. It supports standard voice codecs such as G.711 and G.729, which ensure efficient bandwidth usage while preserving call clarity. The adaptive jitter buffer technology further enhances call quality, compensating for network variations and minimizing latency, which is crucial for clear and uninterrupted conversations.

Additionally, the ATA 186 provides users with advanced calling features that were traditionally available only on PBX systems. These features include caller ID, call waiting, and voicemail functionality, integrating seamlessly with typical telephony services. The device also supports T.38 fax relay, allowing users to send and receive faxes over the internet, thus addressing the needs of environments where fax communication remains essential.

The security of VoIP conversations is also a priority for the ATA 186. It employs encryption protocols such as Secure Real-time Transport Protocol (SRTP) and Transport Layer Security (TLS), ensuring that voice data is securely transmitted across the network. This focus on security helps protect sensitive information transmitted during calls.

Installation and configuration of the ATA 186 is streamlined, with an intuitive web-based interface that simplifies the setup process. This accessibility makes it suitable for users with varying levels of technical expertise, as frequently required adjustments, such as network configurations and firmware updates, can be easily managed.

In conclusion, the Cisco Systems ATA 186 stands out as a versatile and robust solution for users looking to integrate analog phones into a VoIP environment. With its dual port capabilities, high-quality voice codecs, advanced call features, and security measures, it offers a compelling choice for both residential and commercial users seeking seamless telephony integration. As technology evolves, devices like the ATA 186 remain cornerstones in bridging traditional telephony with modern communication systems.