Using this Handbook

This handbook was produced for practical application of the SHARP EL-9900 Graphing Calculator based on exercise examples received from teachers actively engaged in teaching. It can be used with minimal preparation in a variety of situations such as classroom presentations, and also as a self-study reference book.

Introduction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EL-9900 Graphing Calculator

 

 

 

Slope and Intercept of Quadratic Equations

 

Explains the process of each

Explanation of the section

 

 

 

 

step in the key operations

 

 

A quadratic equation of y in terms of x can be expressed by the standard form y = a (x -h)2+

 

 

 

k, where a is the coefficient of the second degree term ( y = ax2 + bx + c) and ( h, k) is the

 

 

 

 

 

 

 

vertex of the parabola formed by the quadratic equation. An equation where the largest

 

 

 

 

 

 

 

exponent on the independent variable x is 2 is considered a quadratic equation. In graphing

 

 

 

 

 

 

 

quadratic equations on the calculator, let the x- variable be represented by the horizontal

 

 

 

 

 

Example

 

axis and let y be represented by the vertical axis. The graph can be adjusted by varying the

 

 

 

 

 

 

Example

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

coefficients a, h, and k.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example of a problem to be

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EL-9900 Graphing Calculator

 

 

 

Graph various quadratic equations and check

the relation between the graphs and

 

 

 

 

 

the values of coefficients of the equations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solved in the section

 

1. Graph y = x 2

and y = (x-2)2.

 

 

 

Step & Key Operation

 

 

 

 

Display

 

Notes

 

 

 

 

*Use either pen touch or cursor to operate.

 

 

 

 

 

 

 

 

 

 

Graph y = x

and y = x +2.

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2.

 

 

 

 

2

 

2

 

2-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Graph y = x 2

and y = 2x 2.

Change the equation in Y2 to y = x +2.

 

 

 

 

 

 

 

 

4. Graph y = x 2

and y = -2x 2.

 

 

 

Y=

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

*

2nd F

 

SUB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENTER

2

ENTER

 

 

 

 

 

 

 

 

 

 

 

Before

 

 

There may be differences in the results of calculations and graph plotting depending on the setting.

 

 

 

 

 

 

 

Before Starting

 

Starting

 

 

Return all settings to the default value and delete2all-2dataView.

both graphs.

 

 

 

 

 

Notice that the addition of 2 moves

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

basic graph down two units on

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the basic y =x2 graph up two units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRAPH

 

 

 

 

 

 

 

 

 

 

 

and the addition of -2 moves the

Important notes to read

 

 

Step & Key Operation

 

Display

 

 

 

 

 

Notes

 

 

 

 

 

the y-axis. This demonstrates the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ k will move the basic graph up k units and placing k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fact that adding k (>0) within the standard form y = a (x -

before operating the calculator

 

1-1Enter the equation y = x2 for Y1.

 

 

 

 

 

 

 

 

 

(<0)k will move the basic graph down k units on the y-axis.

 

 

 

 

 

 

 

 

 

 

 

 

Y=

 

X/θ /T/n

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the equation in Y2 to y = 2x2.

 

 

 

 

 

 

1-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-1Change

 

 

 

 

 

 

Enter the equation y = (x-2) 2

for

 

Y=

 

 

 

 

 

2

ENTER

 

 

 

 

 

 

 

 

 

*

2nd F

 

SUB

 

 

 

 

 

 

 

 

 

 

Y2 using Sub feature.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 ENTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step & Key Operation

 

 

 

 

 

 

 

 

( X/θ /T/n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALPHA

 

A

 

3-2

 

 

 

 

 

 

 

 

 

 

 

 

2 pinches2

or closes the basic

 

 

 

 

 

 

 

 

x2

+

 

 

 

 

View both graphs.

 

 

 

 

 

Notice that the multiplication of

 

 

 

ALPHA

 

H

)

ALPHA

 

K

 

 

 

 

 

 

A clear step-by-step guide

 

 

 

 

 

 

 

1 ENTER

2 ENTER

 

 

 

GRAPH

 

 

 

 

 

 

 

 

 

 

 

y=x graph. This demonstrates

 

 

2nd F

 

SUB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 0

ENTER

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x - h)2 + k will pinch or close

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the fact that multiplying an a

to solving the problems

1-3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(> 1) in the standard form y = a

 

View both graphs.

 

 

 

 

 

 

 

 

 

within the quadratic operation

 

the basic graph.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the addition of -2

 

 

 

 

GRAPH

 

 

 

 

 

 

 

 

 

 

 

4-1

 

 

moves the basic

y =x2 graph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Change rightthe equationtwo unitsin(addingY2 to 2 moves

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y = -2x2.it left two units) on the x-axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This shows that placing an h (>0) within the standard

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

form y = a (x - hY=)2 + k will

move2nd F

 

theSUB

basic(-)graph2 right

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h units and placing an h (<0)* will move it left h units

 

 

 

 

 

Display

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the x-axis. ENTER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-2

GRAPH

 

 

 

 

 

 

 

4-1

 

y =x2 graph and flips it (reflects

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

View both graphs.

 

 

 

 

 

Notice that the multiplication of

Illustrations of the calculator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2 pinches or closes the basic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing an a (<-1) in the standard form y = a (x - h) 2 + k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it) across the x-axis. This dem-

screen for each step

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

onstrates the fact that multiply-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

will pinch or

close the basic graph and flip it (reflect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it) across the x-axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The EL-9900 allows various quadratic equations to be graphed easily.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also the characteristics of quadratic equations can be visually shown through

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the relationship between the changes of coefficient values and their graphs,

 

Merits of Using the EL-9900

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

using the Substitution feature.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Highlights the main functions of the calculator relevant to the section

We would like to express our deepest gratitude to all the teachers whose cooperation we received in editing this book. We aim to produce a handbook which is more replete and useful to everyone, so any comments or ideas on exercises will be welcomed.

(Use the attached blank sheet to create and contribute your own mathematical problems.)

Page 4
Image 4
Sharp EL9900 manual Using this Handbook, Introduction